EVALUATION OF ARTERY VISUALIZATIONS FOR HEART DISEASE DIAGNOSIS

Michelle Borkin,
Krzysztof Gajos, Amanda Peters, Dimitrios Mitsouras,
Simone Melchionna, Frank Rybicki, Charles Feldman,
and Hanspeter Pfister

Harvard School of Engineering & Applied Sciences
Harvard Medical School
Brigham & Women’s Hospital
NON-INVASIVE DIAGNOSIS

1. Obtain patient CT data
2. Segment arteries
3. Generate patient geometries
4. Visualize and analyze data
5. Patient specific blood flow simulation
6. Clinical decision
initial disease

ESS = endothelial shear stress
(i.e., frictional force from blood flow)

This can rupture and give you a heart attack!
DATA

Low ESS = **BAD**

This can rupture and give you a heart attack!

cannot directly measure ESS in living patients!

ESS = endothelial shear stress
(i.e., frictional force from blood flow)
PREVIOUS WORK

• ESS Vessel Visualization

[Rybicki, et al. 2009] [Chatzizisis, et al. 2007]
PREVIOUS WORK

• 2D vs. 3D Evaluation
 [e.g., Cockburn & McKenzie (2002), Laidlaw, et al. (2005), Tory, et al. (2007), Forsberg et al. (2009)]
FORMATIVE QUALITATIVE STUDY

- Semi-structured interviews
- 10 medical doctors and researchers
- Brigham & Women’s Hospital (Boston, MA)

Clinical decision \[\rightarrow\] Visualize and analyze data
LAYOUT AND PROJECTIONS
COLOR

Preferred (standard)

Too “radiological”

Non-rainbow favorite!
QUANTITATIVE STUDY: GOALS

3D vs. 2D

rainbow vs. diverging
Quantitative Study

- 21 Harvard Medical students (12 women and 9 men)
- Mixed within-subject and between-subject design:
 - *within* = dimensionality of representation (2D or 3D)
 - *between* = color mapping (rainbow or diverging)

e.g., Participant A
e.g., Participant B
Quantitative Study

- Dependent measures:
 - fraction of low ESS regions identified
 - number of false positives (i.e., non-low ESS regions identified as low ESS)
 - time to complete a diagnosis
QUANTITATIVE STUDY
RESULTS
ACCURACY

Strong effect of **dimensionality** on accuracy

39% How many low ESS regions found? 62%
ACCURACY

Strong effect of **dimensionality** on accuracy
...as well as **color**

39% How many low ESS regions found? 91%
EFFICIENCY
Participants more efficient in 2D.

5.6 sec/region

2.4 sec/region
Participants more **efficient** in **2D**. Rainbow color map has greater effect on efficiency in **3D**.

10.2 sec/region

2.6 sec/region
COMPLEXITY

Accuracy decreases with increased data complexity in 3D

participants less accurate
COMPLEXITY

Accuracy decreases with increased data complexity in 3D

(not true in 2D!)
Subjective Responses

<table>
<thead>
<tr>
<th></th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>I found it easy to identify low ESS regions.</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>I was able to perform the task efficiently.</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>I am confident I found all the low ESS regions.</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>I am confident all the places I marked are really low ESS.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FINDINGS SUMMARY

• Domain experts important for design and evaluation

• Even for 3D spatial data, a 2D representation is
 ‣ more **accurate** for spatial tasks
 ‣ more **efficient** for spatial tasks

• Rainbow color map
 ‣ is **not accurate** and **not efficient**
 ‣ has adverse effects even greater in 3D
CONCLUDING REMARKS

• 3D representation is still essential for surgical planning

• 2D tree diagram applicable to other applications

• Quantitative study convinced our users of good visualization practices