Readings Covered

Ware, Chap 10: Interacting With Visualizations (2nd half)

Tufte, Chap 2: Macro/Micro

Space-Scale Diagrams: Understanding Multiscale Interfaces George Furnas and Ben Bederson, Proc SIGCHI 95.

Further Reading

Speed-Dependent Automatic Zooming for Browsing Large Documents Takeo Igarashi and Ken Hinckley, Proc. UIST 00, pp. 139-148.

Tuning and testing scrolling interfaces that automatically zoom Andy Cockburn, Joshua Savage, Andrew Wallace. Proc CHI 05.
What Kind of Motion?

- rigid
 - rotate/pan/zoom
 - easy to understand
 - object shape static, positions change
 - morph/change/distort
 - object evolves
 - beating heart, thunderstorm, walking person
 - multiscale/ZUI
 - object appearance changes by viewpoint
 - focus+context
 - carefully chosen distortion
Ware Chapter 10 - Spatial Navigation

- world in hand
 - good: spinning discrete objects
 - bad: large-scale terrain
- eye in hand
 - explicitly move camera
- walking
 - real-world walking
 - terrain following
- flying
 - unconstrained 6DOF navigation
- other: constrained navigation!
Rapid Controlled Movement

- move to selected point of interest
 - normal to surface, logarithmic speed
- trajectories as first-class objects

Spatial Navigation

- real navigation only partially understood
 - compared to low-level perception, JNDs
- spatial memory / environmental cognition
 - city: landmark/path/whole
- implicit logic
 - evolved to deal with reality
 - so we’ll learn from synthetic worlds
 - but we can’t fly in 3D...
- how much applies to synthetic environments?
 - even perception not always the same!
Design Guidelines for VE Landmarks

- Ware’s derived guidelines
 - enough so always can see some
 - visually distinguishable from others
 - visible and recognizable at all scales
 - placed at major paths/junctions

- others, only some of of these crossover for infovis!
 - need all 5 types of landmarks
 - path, edge, district, node, landmark
 - concrete not abstract
 - asymmetry: different sides looks different
 - clumps
 - different from “data objects”
 - need grid structure, alignment

Macro/Micro

- classic example: map
 - arms-length vs. up-close
- paper vs. computer screen
 - 300-600 dpi vs. 72 dpi (legally blind)
 - finally changing
- possibly available for projects
 - 22” 200dpi IBM T221 display
 - 9 Mpixels (4000x2000)
Pad++

- “infinitely” zoomable user interface (ZUI) [video]

[Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics Bederson and Hollan, Proc UIST 94]
Space-Scale Diagrams

- reasoning about navigation and trajectories

Figure 1. *The basic construction of a Space-Scale diagram from a 2D picture.*

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI ’95.
Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI '95.
Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI ’95.
Pan-Zoom Trajectories

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI '95.
Joint Pan-Zoom Problem

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI '95.
Shortest Path?

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI ’95.
Shortest Path

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI '95.
Shortest Path, Details

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI '95.
Semantic Zooming

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI '95.
Smooth and Efficient Zooming

- uw space: $u = \text{pan}, \ w = \text{zoom}$
 - horiz axis: cross-section through objects
 - point = camera at height w above object
 - path = camera path

Optimal Paths Through Space

at each step, cross same number of ellipses cross minimal number of ellipses total Smooth and Efficient

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI '95.
Multiscale Desert Fog

- Critical Zones in Desert Fog: Aids to Multiscale Navigation
 - Susanne Jul, George W. Furnas UIST 98
- Environment devoid of navigational cues
 - not just Pad: 6DOF navigation where object fills view
- Designer strategies
 - explicit world creation - fog not made on purpose
 - games - partial counter example
 - island of information surrounded by desert fog
- Pad: min/max visibility distances
View-Navigation Theory

- Effective View Navigation, CHI 97
 - George Furnas
- characterizing navigability: viewing graph
 - nodes: views
 - links: traversible connections
- 1. short paths between all nodes
 - true in ZUIs (e.g. speed-dependent zooming)
- 2. all views have small number outlinks
 - not overwhelmed by choices
Critical Zones

- region where zoom-in brings interesting views
 - show with navigation "residue"
- unambiguous action choice
 - visible critical zone "residue" of stuff beneath
 - zoom out if see nothing
- extension to VN theory
 - 3. all views contain good residue of all nodes
 - 4. all links must have small outlink-info
 - must build support for these into ZUIs
- do not have "minsize", always use a few pixels
 - they don’t address clutter/scalability
What’s This?

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI ’95.
Fisheye Focus+Context View!

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI ’95.
OrthoZoom

- scale/zoom ratio target: 32 bits, 1:3B
 - index of difficulty: \(\text{ID} = \log(1 + D/W) \)
 - \(D = \) target distance, \(W = \) target size
- control area larger than graphical representation
 - zoom factor is orthogonal cursor-slider distance

OrthoZoom

▶ multi-scale table of contents