Lecture 4: Frameworks/Models
Information Visualization
CPSC 533C, Fall 2007
Tamara Munzner
UBC Computer Science
19 September 2007

Visualization Big Picture

Mapping
- input
 - data semantics
 - use domain knowledge
- output
 - visual encoding
 - visual/graphical/visual/retinal
 - use human perception
 - processing
 - algorithms
 - handle computational constraints

Data Types
- continuous (quantitative)
 - 10 inches, 17 inches, 23 inches
- ordered (ordinal)
 - small, medium, large
days: Sun, Mon, Tue, ...

Channel Ranking Varies by Data Type
- spatial position best for all types

Mackinlay, Card
- data variables
 - 1D, 2D, 3D, 4D, 5D, etc
- data types
 - nominal, ordered, quantitative
- marks
 - point, line, area, surface, volume
 - geometric primitives
- retinal properties
 - size, brightness, color, texture, orientation, shape
 - parameters that control the appearance of geometric primitives
 - separate channels of information flowing from retina to brain

Shneiderman’s Data+Tasks Taxonomy
- data
 - 1D, 2D, 3D, temporal, rd, trees, networks
- text and documents (Hanrahan)
- tasks
 - overview, zoom, filter, details-on-demand,
 - relate, history, extract
- data alone not enough
 - what do you need to do?
- mantra: overview first, zoom and filter, details on demand

Further Readings
The Structure of the Information Visualization Design Space Stuart Card and Jock Mackinlay, Proc. InfoVis 97
[graphics.stanford.edu/papers/polaris]

Papers Covered
The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations Ben Shneiderman, Proc. 1996 IEEE Visual Languages, also Maryland HCDL, TR 96-13 [citeseer.ist.psu.edu/shneiderman6eyes.html]

Frameworks
- Mackinlay/Card/(Bertin)
 - Data Types, Marks, Retinal Attributes (incl Position)
- Shneiderman, Amar/Eagan/Starke
 - Data, Tasks
- Tory/Moeller, Hanrahan
 - Data/Conceptual Models
- Stolte/Tang/Hanrahan, (Wilkinson)
 - Table Algebra ↔ Visual Interface
 - Value
Control Room Example

Which location has the highest power surge for the given time period? (extreme y-dimension)

A fault occurred at the beginning of this recording, and resulted in a temporary power surge. Which location is affected the earliest? (extreme x-dimension)

Which location has the most number of power surges? (extreme count)

Data Models vs. Conceptual Models

- **Data model:** mathematical abstraction
 - set with operations
 - e.g. integers or floats with +, *

- **Conceptual model:** mental construction
 - includes semantics, support data
 - e.g. navigating through city using landmarks

Models Example

- **from data model**
 - 17, 25, -4, 28.6
 - (floats)
 - using conceptual model
 - (temperature)

Time

- **2D+T vs. 3D**
 - same or different? depends on POV
 - time as input data?
 - time as visual encoding?

Average

- **same**
 - time just one kind of abstract input dimension
 - different
 - input semantics
 - visual encoding: spatial position vs. temporal change

- **processings might be different**
 - e.g. interpolate differently across timesteps than across spatial position

Combinatorics of Encodings

- **challenge**
 - pick the best encoding from exponential number of possibilities \((n + 1)^8 \)

- **Principle of Consistency**
 - properties of the image should match properties of data

- **Principle of Importance Ordering**
 - encode most important information in most effective way

Automatic Design

- **Mackinlay, APT**
 - Roth et al, Sage/Visage

- **select visualization automatically given data**
 - vs. Polaris: user drag and drop exploration

- **limited set of data, encodings**
 - scatterplots, bar charts, etc

- **holy grail**
 - entire parameter space

Models Example

- **from data model**
 - 17, 25, -4, 28.6
 - (floats)

- **using conceptual model**
 - (temperature)

to data type

- burned vs. not burned (N)
- hot, warm, cold (O)
- continuous to 4 sig figures (Q)

using task

- making toast
- classifying showers
- finding anomalies in local weather patterns

Polaris:

- Polaris: Circles, Profit/State:Month
- Polaris: Circles, State/Product:Month
- Polaris: Gantt Bar, Country/Time
- Polaris: Circles, Lat/Long

Fields Create Tables and Graphs

- **Ordinal fields:** interpret field as sequence that partitions table into rows and columns:
 - Quarter = (Qtr1), (Qtr2), (Qtr3), (Qtr4)

- **Quantitative fields:** treat field as single element sequence and encode as axes:
 - Profit = (Profit)

Combinatorics of Encodings

- **challenge**
 - pick the best encoding from exponential number of possibilities \((n + 1)^8 \)

- **Principle of Consistency**
 - properties of the image should match properties of data

- **Principle of Importance Ordering**
 - encode most important information in most effective way

Automatic Design

- **Mackinlay, APT**
- **Roth et al, Sage/Visage**

- **select visualization automatically given data**
 - vs. Polaris: user drag and drop exploration

- **limited set of data, encodings**
 - scatterplots, bar charts, etc

- **holy grail**
 - entire parameter space
Mackinlay’s Criteria
- **Expressiveness**
 - Set of facts expressible in visual language if sentences (visualizations) in language express all facts in data, and **only** facts in data.
- **Consider the failure cases...**

Cannot Express the Facts
- A $1 \Rightarrow N$ relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position

Expresses Facts Not in the Data
- Length interpreted as quantitative value
- Thus length says something untrue about nominal data

Arguments
- **“avoid interaction”** dictum controversial
 - part of power of computer-based methods
 - but can degenerate into human-powered search
- presentation/exposition vs. exploration
- art vs. science vs. technology

Summary
- **formal approach to picture specification**
 - declare the picture you want to see
 - compile query, analysis, and rendering commands needed to make the pictures
 - automatically generate presentations by searching over the space of designs
- Bertin’s vision still not complete
 - formalize data model
 - formalize the specifications
 - experimentally test perceptual assumptions
- much more research to be done...