Lecture 13: User Studies
Information Visualization
CPSC 533C, Fall 2007

Ghida Karam
UBC Computer Science
24 October 2007

Readings Covered
Ware, Appendix C: The Perceptual Evaluation of Visualization Techniques and Systems.

Further Readings
Task-Centered User Interface Design, Clayton Lewis and John Rieman, Chapters 0-5.

Ware: Evaluation Appendix
▶ perceptual evaluation of infovis techniques and systems
▶ empirical research methods applied to vis
▶ difficult to isolate evaluation to perception
▶ research method depends on research question and object under study

Psychophysics
▶ method of limits
▶ find limitations of human perceptions
▶ error detection methods
▶ find threshold of performance degradation
▶ staircase procedure to find threshold faster
▶ method of adjustment
▶ find optimal level of stimulus by letting subjects control the level

Cognitive Psychology
▶ repeating simple, but important tasks, and measure reaction time or error
 • Miller’s 7 +/- 2 short-term memory experiments
 • Fitts’ Law (target selection)
 • Hick’s Law (decision making given n choices)
▶ interference between channels
▶ multi-modal studies
 • using haptic feedback for interruption when the participants were visually (and cognitively) busy

Structural Analysis
▶ requirement analysis, task analysis
▶ structured interviews
 • can be used almost anywhere, for open-ended questions and answers
▶ rating/Likert scales
 • commonly used to solicit subjective feedback
 • ex: NASA-TLX (Task Load Index) to assess mental workload
 • “It is frustrating to use the interface”
 • Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree

Comparative User Studies
▶ study design: factors and levels
 ▶ factors
 • independent variables
 • ex: interface, task, participant demographics
 ▶ levels
 • number of variables in each factor
 • limited by length of study and number of participants

Comparative User Studies
▶ result analysis
▶ should know how to analyze the main results/hypotheses BEFORE study
▶ hypothesis testing
 • ex from Snap: Participants will be faster with a coordinated overview+detail display than with a display with the task requires reading details
 • pilots!
▶ should know the main results of the study BEFORE actual study

Evaluation Throughout Design Cycle
▶ user/task centered design cycle
 ▶ initial assessments
 ▶ iterative design process
 ▶ benchmarking
 ▶ deployment
▶ identify problems, go back to previous step

Initial Assessments
▶ what kind of problems are the system aiming to address?
 • analyze a large and complex dataset
 • who are your target users?
 • data analysis
 ▶ what are the tasks? what are the goals?
 • find trends and patterns in the data via exploratory analysis
 ▶ what are their current practices
 • statistical analysis
 ▶ why and how can visualization be useful?
 • visual spotting of trends and patterns
 ▶ talk to the users, and observe what they do
 ▶ task analysis

Iterative Design Process
▶ does your design address the users’ needs?
▶ can they use it?
▶ where are the usability problems?
▶ evaluate without users
 • cognitive walkthrough
 • action analysis
 • heuristics analysis
▶ evaluate with users
 • usability evaluations (think-aloud)
 • bottom-line measurements
 • example: snap paper experiment 1

Benchmarking
▶ how does your system compare to existing ones?
 • snap paper experiment 2
 • empirical, comparative studies
 ▶ ask specific questions
 ▶ compare an aspect of the system with specific tasks
 • Amar/Stasko task taxonomy paper
 ▶ quantitative, but limited
 • The Challenge of Information Visualization Evaluation, Catherine Plaisant, Proc. AVI 2004

Readings Covered
Comparative User Studies
▶ study design: within, or between?
 ▶ within
 • everybody does all the conditions
 • can lead to ordering effects
 • can account for individual differences and reduce noise
 • thus can be more powerful and require fewer participants
 • combinatorial explosion
 ▶ severe limits on number of conditions
 • possible workaround is multiple sessions
 ▶ between
 • divide participants into groups
 • each group does only some conditions

Comparative User Studies
▶ result analysis
▶ should know how to analyze the main results/hypotheses BEFORE study
▶ hypothesis testing analysis (using ANOVA or t-tests) tests how likely observed differences between groups are due to chance alone
 • ex: a p-value of 0.05 means there is a 5% probability the difference occurred by chance
▶ pilots!
▶ should know the main results of the study BEFORE actual study

Comparative User Studies
▶ measurements (dependent variables)
 ▶ performance indicators: task completion time, error rates, mouse movement
 ▶ subjective participant feedback: satisfaction ratings, closed-ended questions, interview
 ▶ observations: behaviors, signs of frustration
 ▶ number of participants
 ▶ depends on effect size and study design: power of experiment
 ▶ possible confounds?
 ▶ learning effect: did everybody use interfaces in a certain order?
 ▶ if so, are people faster because they are more practiced, or because of true interface effect?
Deployment
- how is the system used in the wild?
- how are people using it?
- does the system fit into existing work flow? environment?
- contextual studies, field studies

Comparing Systems vs. Characterizing Usage
- user/task centered design cycle:
 - initial assessments
 - iterative design process
 - benchmarking: head-to-head comparison
 - deployment
 - identify problems, go back to previous step
 - understanding/characterizing techniques
 - tease apart factors
 - when and how is technique appropriate
- line is blurry: intent

Snap-Together Visualization: CMV
- relation :: visualization
- tuple :: item
- primary key :: item ID
- join :: coordination

Snap Usability Evaluation
- 6 participants: 3 data analysts, 3 programmers
- census bureau: analysts + 1 programmer (expert?)
- CS students: 2 programmers (novice?)
- 3 tasks
- 2 construct to spec
- 1 open ended, "abstract thinking about coordination"
- measurements
- survey of background knowledge (data, tools)
- success at task
- learning time, time to completion

Snap Usability Results
- success, enthusiasm
 - possible confound from please-the-creator effect
- analyst/programmer differences
 - interface building as exploration vs. construction
 - analysts performed better
- snap usability problems
 - explicit overview of coordination setup may help
 - provide attribute lists instead of requiring access queries
 - window rearrangement timesink

Snap CMV Formalism
- one-to-one
 - linked selection across views
 - overview select → child load
 - linked scrolling across views
- one-to-many
 - parent select → child load
- architecture
 - independent modules linked via API
 - versus tightly coupled Improvise approach

Snap User Study
- hypothesis
 - participants will be faster with a coordinated overview+detail display than with an uncoordinated overview+detail display with the task requires reading details
- factors are and levels
 - interface: 3 levels
 - uncoordinated overview+detail
 - coordinated overview+detail
 - task: 9 levels
 - many browsing tasks, not grouped prior to study
 - closed-ended, with obvious correct answers
 - which task has the highest college degree
 - compare with open-ended usability task: "Please create a user-interface that will support users in efficiently performing the following task: to be able to quickly discover which states have high population and high Per Capita income, and examine their counties with the most employees"

Snap User Study Design
- within-subject
 - everybody worked on all interfaces/task combos
- counterbalanced between interfaces
 - 6 permutations to avoid ordering / learning effects
 - 3 groups x 6 permutations = 18 participants
 - need one task set (9) for each interface
 - tasks in each set need to be isomorphic
- 27 tasks per study per participant
 - 3 interfaces x 9 tasks
- time result analysis: hypothesis testing with ANOVA
 - 3 (interface) x 9 (task) within-subjects ANOVA to check for main effects of interface, or task, or interface/task interaction
 - ANOVA
 - (Analysis Of VAriance between groups)
 - commonly used statistics for factorial designs
 - tests difference between means of two or more groups
 - example use: two-way ANOVA to see if there is an effect of interface and task, or interaction between them

Perceptual Scalability
- what are perceptual/cognitive limits when screen-space constraints lifted?
 - 2 vs. 32 Mpixel display
 - macro/micro views
 - perceptually scalable
 - no increase in task completion times when normalize to amount of data

Embedded Visualizations
- design
 - 2 display sizes, between-subjects
 - (data size also increased proportionally)
 - 3 visualization designs, within
 - small multiples: bars
 - embedded graphs
 - embedded bars
 - 7 tasks, within
 - 42 tasks per participant
 - 3 vis x 7 tasks x 2 trials

Critique
- good example of usability vs. comparative study
 - Usability testing
 - improve product, design vs. prototype usable!
 - Discover knowledge (how are methods useful?)
 - How people use them
 - Usability evaluation
 - Do they work? (Are they usable?)
 - How well? (How well do they work?)
 - How long does it take? (How well do they work?)

Perceptual Scalability
- design
 - 2 display sizes, between-subjects
 - (data size also increased proportionally)
 - 3 visualization designs, within
 - small multiples: bars
 - embedded graphs
 - embedded bars
 - 7 tasks, within
 - 42 tasks per participant
 - 3 vis x 7 tasks x 2 trials

Snap CMV Formalism
- relation :: visualization
- tuple :: item
- primary key :: item ID
- join :: coordination

Snap Usability Results
- success, enthusiasm
 - possible confound from please-the-creator effect
- analyst/programmer differences
 - interface building as exploration vs. construction
 - analysts performed better
- snap usability problems
 - explicit overview of coordination setup may help
 - provide attribute lists instead of requiring access queries
 - window rearrangement timesink

Snap Usability Evaluation
- 6 participants: 3 data analysts, 3 programmers
- census bureau: analysts + 1 programmer (expert?)
- CS students: 2 programmers (novice?)
- 3 tasks
- 2 construct to spec
- 1 open ended, "abstract thinking about coordination"
- measurements
- survey of background knowledge (data, tools)
- success at task
- learning time, time to completion

Snap CMV Formalism
- relation :: visualization
- tuple :: item
- primary key :: item ID
- join :: coordination

Snap Usability Results
- success, enthusiasm
 - possible confound from please-the-creator effect
- analyst/programmer differences
 - interface building as exploration vs. construction
 - analysts performed better
- snap usability problems
 - explicit overview of coordination setup may help
 - provide attribute lists instead of requiring access queries
 - window rearrangement timesink

Snap Usability Evaluation
- 6 participants: 3 data analysts, 3 programmers
- census bureau: analysts + 1 programmer (expert?)
- CS students: 2 programmers (novice?)
- 3 tasks
- 2 construct to spec
- 1 open ended, "abstract thinking about coordination"
- measurements
- survey of background knowledge (data, tools)
- success at task
- learning time, time to completion

Snap CMV Formalism
- relation :: visualization
- tuple :: item
- primary key :: item ID
- join :: coordination

Snap Usability Results
- success, enthusiasm
 - possible confound from please-the-creator effect
- analyst/programmer differences
 - interface building as exploration vs. construction
 - analysts performed better
- snap usability problems
 - explicit overview of coordination setup may help
 - provide attribute lists instead of requiring access queries
 - window rearrangement timesink
Results

- **20x** increase in data, but only **3x** increase in absolute task times

![Image](image1.png)

Fisheye Multilevel Networks

- **2 interfaces** (fisheye, zoom)
- **2 tasks** (isomorphic)
- stages: find and repair
- within subjects, counterbalanced order
- **20 participants**
- data: **154 nodes, 39 clusters**
- **measurements**
 - completion time
 - number of zooms
 - success

Lab Experiment

- sig effect of interface: fisheye faster
- but no differences with find subtask
- information visible in both displays
- solution quality differed: fisheye better
- local rerouting difficult in full-zoom

Critique

- first study of macro/micro effects
- breaking new ground
- many possible followups
- physical navigation vs. virtual navigation

Field Experiment

- 2 real control room operators
- response times similar
- no statistical analysis, too few subjects
- expressed preference for fisheye over full-zoom
 - (experimenter effect?)
- concerns about fisheye: missing details

Coding Methodology

- interface
 - which interface used
 - whether picture/chart/graph
- usage (every utterance!)
 - goal
 - extract
 - quant/qual
 - goal-oriented/opportunist
 - integrated/unintegrated
 - brief-writing
 - quant/qual
 - QMM/vis/notes

Results

- **sig difference** between vis used at CTA stages
 - charts to build QMM
 - images to verify/adjust QMM
 - all kinds during brief-writing
 - many others...

Critique

- video coding is huge amount of work, but very illuminating
- untying complex story of real tool use
- methodology of CTA construction not discussed here
- often bottomup/topdown mix

Credits

- Heidi Lam guest lecture