Cartographic Visualization

April Webster
November 21, 2008

Outline
- Background
 - Cartography & Cartoviz/Geoviz
 - Recent work in Cartoviz/Geoviz
- An introduction to Geoviz methods
- Animation for spatiotemporal data exploration
- Conditioned choropleth maps
- Cartograms
- Summary
 - Future of Cartoviz/Geoviz

Cartography:
- It is the science or art of mapmaking
- It is a practice that has a long history
- Until the last couple of decades, its primary purpose has been that of communication and the storage of information via static paper maps

Cartographic Visualization:
- With the introduction of GIS, computerized tools became available making it easier to generate maps and do spatial analysis
- Cartographic (or geographic) visualization is a relatively new development in the field of cartography
- It is the marriage of cartography, information visualization and exploratory data analysis

Papers presented
- Geovisualization illustrated
 - Geographic visualization: designing manipulable maps for exploring temporally varying georeferenced statistics
 - Conditioned Choropleth Maps and Hypothesis Generation.
 - CartoDraw: A Fast Algorithm for Generating Contiguous Cartograms.

Geovisualization Illustrated

Goal of paper:
To increase awareness within the geographic community of the geovisualization approach and its benefits.

Author's approach:
- Show how alternative graphic representations can stimulate & support visual thinking about spatial patterns, relationships, & trends
- Applies the geoviz approach to one of the most well-known maps in the history of cartography
 - “Napoleon's March on Moscow” (Minard)

Napoleon's March on Moscow (Minard):

Minard's Map:
- How can we take an alternative look at this map and its data to improve our understanding about this event?

Small multiples for time series:

Animation to represent time:
- Variations introduced to represent an event are deduced from real movement on the map
- Animated map provided on author’s website
 - http://www.itc.nl/personal/kraak/1812

2-d chart:

3D view of the size of Napoleon's army:

Space-time cube of Napoleon’s march:

Example of visualization not influenced by traditional cartographic rules:
- Reveals data not shown in original map: (1) 2 battles took at Pollock (2) Napoleon stayed in Moscow for a month before retreating west

Example of visualization influenced by traditional cartographic rules:
- Column height = # of troops (color could be added to represent temperature as well)
- Interactivity necessary to look at 3-d map from different views in order to see all the hidden data

Future of Cartoviz/Geoviz

Sensing 57(2003), 390-399.
Cartograms.
Critique:
- Light intro to the geoviz – basic techniques
- Stresses that new & different views can reveal new insights
- No in-depth description of techniques
- No discussion of pros/cons
- Could have made better use of small multiples

Task: Time trend in heart disease
- Observation with think-aloud
- Only those users who used animation were able to identify the subtle spatiotemporal pattern

Usability Study:
- **Purpose:** to investigate how spatial data exploration is facilitated (if at all) by the geoviz tools (animation, time stepping, focusing).
- **Method:** observation with think-aloud protocol & system-generated logs
- **Participants:** 9 domain experts (doing research on analysis of health-related data)
- **Tasks:** users were asked to look for spatial trends over time

Critique:
- In-depth usability study of spatial data exploration by domain experts
- Good description of usability study protocol
- Not very flexible in data classification (2, 5 or 7 classes only)
- Analysis would have been stronger if had also compared animation to small multiples
- No support for standardizing data
- Somewhat unclear in their discussion of results

Conditioned Choropleth Maps (CCMaps):
- What is a choropleth map?:
 - A map in which data collection units are shaded with an intensity proportional to the data values associated with those units.
- What is conditioning?
 - It partitions data for a variable of interest into subsets to control the spatial variation of this variable that can be attributed to explanatory (or conditioning) variables
 - Example: What causes the spatial variation of lung cancer mortality across the United States?

Purpose of CCMaps:
- To support the generation of hypotheses to explain the spatial variation of a variable; a common and important task for geographers.
 - Example: What causes the spatial variation of lung cancer mortality across the United States?

Motivation for conditioning:
- In many cases, we already know some of the factors contributing to the spatial variability of a variable.
 - Example: We know that smoking is a major factor contributing to lung cancer mortality.
- What we really want to figure out is what else might be contributing to its spatial pattern?
 - Example: Are there other factors, such as environmental conditions, that are also contributing to the spatial pattern of lung cancer mortality?
- To get at this underlying spatial pattern, we need a way to remove or "control for" known variation.
 - Example: We might remove the effect of smoking from the spatial pattern of lung cancer mortality to see if there are other underlying factors contributing to the variation.
- Why? - our visual-cognitive system cannot do it for us. We can't mentally remove known components of variation and envision the underlying patterns.

CCMaps:
- Dependent variable: coarsely partitioned into 3 classes
 - Region's class indicated by colour: red=high, gray=medium, blue=low
- 2 conditioning variables: also coarsely partitioned into 3 classes (low, med, high)
 - Region's class indicated by its location in a 3-by-3 matrix of panels
 - Initial classification done using equal intervals (33% of regions included in each class)
Comparison: efficiency and area error

- Polygon error – sorted
- Total area error

Efficiency comparison

Comparison: population cartograms

- Kocmoud & House's
- Tobler's population cartogram

Scanline placement:

- Automatic versus Interactive
- Automatic placement of scanlines
- Interactive placement of scanlines

Future of Geovisualization:

- The demand for geovisualization techniques will continue to increase as the sheer volume of geospatial data continues to grow exponentially and the popularity of spatial information increases due to tools such as Google Maps.

Critique:

- Helps support the explanation of variability in spatial patterns
- Dynamic and interactive
- Good default colour scheme
- Also provides traditional statistical views
- Limited to two explanatory variables
- No flexibility in the classification of variables
- No guidance for choosing conditioning variables
- No support for dynamic data standardization

Motivation behind CartoDraw:

- Drawing cartograms by hand is a laborious task
- Previous computer-aided techniques:
 - Are prohibitively slow
 - E.g., Kocmoud & House report a time of 18 hours for a medium-sized map (744 vertices)
 - Produce significant deformation of global shape
- General technique for “trading off shape and area adjustments” – wider applicability than just geoviz.

Goal of CartoDraw:

- The goal of the authors is to produce a dynamic “on the fly” cartogram drawing method that preserves global shape to create a recognizable cartogram.

CartoDraw Method:

- **Step 1:** intelligent decimation of vertices
 - Vertices with no noticeable effect on polygon shape & that don’t belong to multiple polygons removed
- **Step 2:** heuristic, scanline-based incremental repositioning of vertices (global 1st, then interior)
 - **Heuristic:** area error function and shape error function
 - For each scanline, the repositioned vertices produced are only accepted if the area error and shape error are below the specified thresholds
- **Step 3:** fitting undecimated polygons to the decimated mesh to get the output cartogram

What is a cartogram?:

- Conventional maps only show data in relation to land area, not population or some other variable of interest.
- By intentionally distorting individual map regions so that their areas are proportional to some other input parameter this alternative information can be communicated more effectively.
- Maps transformed in this way are called CARTOGRAMS.
- Typical applications: social, political, & epidemiological.

Key property of a cartogram:

- To be effective, a cartogram must be recognizable. That is, a viewer must be able to quickly determine the geographic area that is being presented!

Cognostics?:

- Cognostics mentioned briefly as a possible way for choosing where to locate partitioning sliders
- But they don’t really describe how their cognostic ranks different possible partitions
- They indicate that this is an area for future work

Critique:

- Dynamic generation of cartogram
 - 2 seconds for US population data
 - 19 sec for 90,000 polygons
- Minimizes error in global shape to promote recognition
- Highly sensitive to scanline placement – user defined scanlines better
- Not much guidance provided to the user for placing scanlines appropriately