Overview
- **What Not To Do (General Research)**
- **What To Do (General Research)**
- **What To Do (For This Class)**

Paper Pitfalls: Strategy
- **What I Did Over My Summer Vacation**
 - focus on effort not contribution
 - too low-level
- **Least Publishable Unit**
 - tiniest increment beyond (your) previous work
 - bonus points: new name for old technique
- **Dense As Plutonium**
 - so much content that no room to explain why/what/how
 - falls reproducibility test
- **Bad Slice and Dice**
 - two papers split up wrong
 - neither is standalone, yet both repeat
- **Slimy Simultaneous Submission**
 - often detected when same reviewer for both
 - instant dual rejection, multi-conference blacklist

Paper Pitfalls: Tactics
- **Guess My Contributions Game**
 - it’s your job to tell reader explicitly
 - consider carefully, often different from original goals
- **I Am So Unique**
 - don’t ignore previous work
 - motivation: why should I care
 - overview: what did you do
 - details: how did you do it
 - Jargon Attack
 - avoid where you can
 - define before using

InfoVis Paper Styles
- **technique**
 - most common
 - here’s how to do X
 - do first, or do better
- **design study**
 - not just apply technique X to domain Y
 - justify visual encoding choices
- **system**
 - very hard to do well!
 - lessons learned: why do we care?
- **evaluation**
 - often but not always user studies
- **model**
 - frameworks, taxonomies
- **results**
 - complexity, performance, visual quality, efficacy
 - usage scenarios, case studies

Paper Writing: InfoVis Technique/Design Study
- what problem are you solving
- why should I care
- order depends on whether familiar
- why doesn’t existing systems solve problem
- technique
 - how algorithm works: overview, then details
- design study
 - why is mapping from domain problem to visual encoding
 - why does it solve problem
 - abstraction and justification is critical
 - may include multiple design iterations
- results
 - complexity, performance, visual quality, efficacy
 - usage scenarios, case studies

Paper Writing: Contributions
- what are your research contributions?
 - what can we do that wasn’t possible before?
 - how can we do something better than before?
 - what do we know that was unknown or unclear before?
- determines everything
 - from high-level message to which details
 - often not obvious
 - diverged from original goals, in retrospect
- state them explicitly and clearly in introduction
- don’t hope that reviewer or reader will fill in for you
- don’t leave unsaid what should be obvious after close reading of previous work
- best case: taxonomy as aid to thinking, finding gaps
 - actual paper may (should?) have a mix of these elements
 - more at www.infovis.org/infovis/2003/CFP/6papers

Paper Writing: InfoVis Technique/Design Study
- write and give talk first
- then create paper outline from talk
- encourages concise explanations of critical ideas
 - avoids wordiness/rhetoric and digressions
- practice talk feedback session: at least 3x talk length
- global comments, then slide by slide detailed discussion
- nurture culture of internal critique

Course Requirements vs. Standard Paper: 1
- research novelty not required
- some past projects implement published technique
- some past projects explicitly not aiming for academic publishability
- many past projects propose solution using existing techniques
- some past projects have become posters at InfoVis
- some past projects could have been submitted as papers with further work

Course Requirements vs. Standard Paper: 2
- explicit explanation of what was coded is required for programming projects
- submission of code itself not required
 - (but you’re encouraged to make it available open-source)
- part of my judgement is about how much work you did
 - high level: what toolkits etc did you use
 - medium level: what pre-existing features in them did you use
 - low level: how did you adapt/extend existing features to solve your specific problems
- design justification is required for programming projects
 - technique alone is not enough
- evaluation encouraged but not required
 - tradeoff: hard to do both evaluation and technique

Lecture 15: Writing Papers

Information Visualization

CPSC 533C, Fall 2006

Tamara Munzner

UBC Computer Science

28 November 2006
Final Presentations

- 20 minutes each
 - some context setting
 - focus on results
- demos encouraged
 - do include screenshots in slides as backup
 - practice in advance since hard to do quickly
 - if you're using my laptop, must checkout in advance