Lecture 6: Space/Order
Information Visualization
CPSC 533C, Fall 2006
Tamara Munzner
UBC Computer Science
28 September 2006

Interactive Ordering: Table Lens
- click to sort by columns
- also, is focus+context approach
- demo: www.inxight.com/products/sdks/tl

Interactive Ordering: Rivet
- performance analysis of parallel system
 - order: machine name vs. lock acquisition time
- overview
- zoom
- reorder

Automatic Ordering: Trellis
- alphabetical site, variety
- use group median

Trellis Structure
- conditioning/trellising: choose structure
- pick how to subdivide into panels
- pick x/y axes for indiv panels
- small-scale: within panels
- main-effects: sort by group median
- derived space, from categorical to ordered

Multiscale Banking to 45
- frequency domain analysis

VisDB: Spacefilling Pixels
- how to draw pixels?
 - sort, color by relevance
 - local ordering
- spiral
- 2D

VisDB Results: Separate Dimensions
- grouped dimensions
- separate dimensions

Readings Covered
http://cm.bell-labs.com/stat/doc/trellis.jcgs.col.ps

Chapter 4: Small Multiples. Chapter 6: Narratives of Space and Time

http://www.dbs.informatik.uni-muenchen.de/dbs/projek/papers/visdb.ps

Confirmed Hypothesis
- dataset error with Morris switched?
- old trellis: yield against variety given year/site
- new trellis: yield against site and year given variety
- exploration suggested by previous main-effects ordering

Partial Residuals
- fixed dataset, Morris data switched
- explicitly show differences
 - take means into account
 - line is 10% trimmed mean (toss outliers)

Banking to 45 Degrees
- mentioned but not explained in this reading
- perceptual principle: most accurate angle judgement at 45 degrees
- pick aspect ratio (height/width) accordingly

Multiscale Banking to 45
- frequency domain analysis

VisDB Windows
grouped dimensions
separate dimensions

VisDB Results: Grouped Dimensions

Space vs. Time: Showing Change

 literal abstract
 time for time space for time
 animation: show time using temporal change
 - good: show process

 [www.geom.uiuc.edu/docs/outreach/oi/evert.mpg]

 Space vs. Time: Showing Change

 literal abstract
 time for time space for time
 small multiples: show time using space
 - overview: show each time step in array
 - compare: side-by-side easier than temporal
 - external cognition instead of internal memory

 [www.geom.uiuc.edu/docs/outreach/oi/evert.mpg]

 Derived Spaces: Slope

 literal abstract
 time for time space for time
 narrative of space and time
 Marey train schedule, 1885
 - horizontal line length: stop length
 - slope: speed
 - intersection: time/place of crossing

 Animation vs. Small Multiples

 Tversky argument: intuition that animation helps is wrong
 - meta-review of previous studies
 - often more info shown in animation view so not a fair comparison
 - carefully chosen segmentation into small multiples better than animation if equivalent information shown