
The Structure of the Information Visualization Design Space Stuart Card and Jock Mackinlay, Proc. InfoVis 97 [citeseer.ist.psu.edu/card96structure.html]

The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations Ben Shneiderman, Proc. 1996 IEEE Visual Languages, also Maryland HCIL TR 96-13 [citeseer.ist.psu.edu/shneiderman96eyes.html]

Further Readings

Frameworks

► Shneiderman
 ▶ Data, Tasks
► Mackinlay/Card/(Bertin)
 ▶ Data Types, Marks, Retinal Attributes (incl Position)
► Stolte/Tang/Hanrahan, (Wilkinson)
 ▶ Table Algebra ⇔ Visual Interface
► Hanrahan, Tory/Moeller
 ▶ Data/Conceptual Models
Visual Language is a Sign System

- Image perceived as set of signs
- Sender encodes information in these signs
- Receiver decodes information from these signs
Visualization Big Picture

task

data
 variable count
 physical type (int, float, etc)

domain
 metadata
 semantics
 conceptual model

processing algorithms
 mapping
 visual encoding
 visual metaphor

image
 variable count
 visual channel
Mapping

- **input**
 - data semantics
 - use domain knowledge

- **output**
 - visual encoding
 - visual/graphical/perceptual/retinal
 - channels/attributes/dimensions/variables
 - use human perception

- **processing**
 - algorithms
 - handle computational constraints
Bertin: Semiology of Graphics

- geometric primitives: marks
 - points, lines, areas, volumes
- attributes: visual/retinal variables
 - parameters control mark appearance
 - separable channels flowing from retina to brain

- x, y
 - position
- z
 - size
 - greyscale
 - color
 - texture
 - orientation
 - shape

Design Space = Visual Metaphors

Information in Position

1. A, B, C are distinguishable
2. B is between A and C.
3. BC is twice as long as AB.

"Resemblance, order and proportional are the three signfields in graphics." - Bertin
Data Types

- continuous (quantitative)
 - 10 inches, 17 inches, 23 inches
Data Types

- **continuous (quantitative)**
 - 10 inches, 17 inches, 23 inches

- **ordered (ordinal)**
 - small, medium, large
 - days: Sun, Mon, Tue, ...

[Graphics source: polaris.stanford.edu]
Data Types

- **continuous (quantitative)**
 - 10 inches, 17 inches, 23 inches

- **ordered (ordinal)**
 - small, medium, large
 - days: Sun, Mon, Tue, ...

- **categorical (nominal)**
 - apples, oranges, bananas

[graphics.stanford.edu/papers/polaris]
More Data Types: Stevens

- subdivide quantitative further:
 - interval: 0 location arbitrary
 - time: seconds, minutes
 - ratio: 0 fixed
 - physical measurements: Kelvin temp

Channel Ranking Varies by Data Type

- spatial position best for all types

[Mackinlay, Automating the Design of Graphical Presentations of Relational Information, ACM TOG 5:2, 1986]
Mackinlay, Card

- Data Variables
 - 1D, 2D, 3D, 4D, 5D, etc
- Data Types
 - nominal, ordered, quantitative
- Marks
 - point, line, area, surface, volume
 - geometric primitives
- Retinal Properties
 - size, brightness, color, texture, orientation, shape...
 - parameters that control the appearance of geometric primitives
 - separable channels of information flowing from retina to brain

- closest thing to central dogma we’ve got
Shneiderman’s Data+Tasks Taxonomy

- **Data**
 - 1D, 2D, 3D, temporal, nD, trees, networks
 - text and documents (Hanrahan)

- **Tasks**
 - Overview, Zoom, Filter, Details-on-demand,
 - Relate, History, Extract

- data alone not enough
 - what do you need to do?

[Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations]
Data Models vs. Conceptual Models

- data model: mathematical abstraction
 - set with operations
 - e.g. integers or floats with \ast, $+$

- conceptual model: mental construction
 - includes semantics, support data
 - e.g. navigating through city using landmarks

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding/walk005.html]
Models Example

- from data model
 - 17, 25, -4, 28.6
 - (floats)
Models Example

- from data model
 - 17, 25, -4, 28.6
 - (floats)
- using conceptual model
 - (temperature)
Models Example

- from data model
 - 17, 25, -4, 28.6
 - (floats)
- using conceptual model
 - (temperature)
- to data type
 - burned vs. not burned (N)
 - hot, warm, cold (O)
 - continuous to 4 sig figures (Q)
Models Example

- from data model
 - 17, 25, -4, 28.6
 - (floats)
- using conceptual model
 - (temperature)
- to data type
 - burned vs. not burned (N)
 - hot, warm, cold (O)
 - continuous to 4 sig figures (Q)
- using task
 - making toast
 - classifying showers
 - finding anomalies in local weather patterns
Time

- 2D+T vs. 3D
 - same or different? depends on POV
 - time as input data?
 - time as visual encoding?
 - same
 - time just one kind of abstract input dimension
 - different
 - input semantics
 - visual encoding: spatial position vs. temporal change
 - processing might be different
 - e.g. interpolate differently across timesteps than across spatial position
Polaris

- infovis spreadsheet
- table cell
 - not just numbers: graphical elements
 - wide range of retinal variables and marks
- table algebra ⇔ interactive interface
 - formal language
- influenced by Wilkinson
Polaris: Gantt Bar, Country/Time

Polaris: Circles, Lat/Long

Polaris: Circles, Profit/State: Months

Fields Create Tables and Graphs

- Ordinal fields: interpret field as sequence that partitions table into rows and columns:
 - Quarter = (Qtr1), (Qtr2), (Qtr3), (Qtr4) ⇔

<table>
<thead>
<tr>
<th>Qtr1</th>
<th>Qtr2</th>
<th>Qtr3</th>
<th>Qtr4</th>
</tr>
</thead>
<tbody>
<tr>
<td>95892</td>
<td>101760</td>
<td>105282</td>
<td>98225</td>
</tr>
</tbody>
</table>

- Quantitative fields: treat field as single element sequence and encode as axes:
 - Profit = (Profit) ⇔

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
Combinatorics of Encodings

- challenge
 - pick the best encoding from exponential number of possibilities \((n + 1)^8\)
- Principle of Consistency
 - properties of the image should match properties of data
- Principle of Importance Ordering
 - encode most important information in most effective way

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
Automatic Design

- Mackinlay, APT
- Roth et al, Sage/Visage
- select visualization automatically given data
 - vs. Polaris: user drag and drop exploration
- limited set of data, encodings
 - scatterplots, bar charts, etc
- holy grail
 - entire parameter space
Mackinlay’s Criteria

- Expressiveness
 - Set of facts expressible in visual language if sentences (visualizations) in language express all facts in data, and only facts in data.

- consider the failure cases...

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
Cannot Express the Facts

- A 1 ⇔ N relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position.

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
Expresses Facts Not in the Data

- Length interpreted as quantitative value
 - Thus length says something untrue about nominal data

Fig. 11. Incorrect use of a bar chart for the Nation relation. The lengths of the bars suggest an ordering on the vertical axis, as if the USA cars were longer or better than the other cars, which is not true for the Nation relation.

[Mackinlay, APT]
[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
Mackinlay’s Criteria

▶ Expressiveness
 ▶ Set of facts expressible in visual language if sentences (visualizations) in language express all facts in data, and only facts in data.

▶ Effectiveness
 ▶ A visualization is more effective than another visualization if information conveyed by one visualization is more readily perceived than information in other.

▶ subject of the next lecture

[Hanrahan,graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
Summary

- formal approach to picture specification
 - declare the picture you want to see
 - compile query, analysis, and rendering commands needed to make the pictures
 - automatically generate presentations by searching over the space of designs
- Bertin’s vision still not complete
 - formalize data model
 - formalize the specifications
 - experimentally test perceptual assumptions
- much more research to be done...

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
Value of Vis

- \(l(t) = V(D, S, t) \)
 - data \(D \) transformed by spec \(S \) into time-varying image
- \(\frac{dK}{dt} = P(l, K) \)
 - perception \(P \) of image by user increases knowledge \(K \)
- \(S(t) = S_0 + \int E(K) \)
 - interactive exploration \(E \) changes spec

Cost Model

- costs
 - $C_i(S_0)$: initial development costs
 - $C_u(S_0)$: initial per-user costs
 - $C_s(S_0)$: initial per-session costs
 - C_e: perception and exploration costs

- benefit
 - $G = nmW(\Delta K)$

- profit
 - $F = G - C$
 - $F = nm(W(\Delta K) - C_s - kC_e) - C_i - nC_u$

"a great visualization method is used by many people, who use it routinely to obtain highly valuable knowledge, without having to spend time and money on hardware, software, and effort. Indeed, quite obvious."
Arguments

- new methods not better by definition
- vis not good by definition
 - must show why automated extraction insufficient
 - e.g. automation not foolproof

- if no clear patterns
 - method limitation?
 - wrong parameters?
 - or truly not there in data?

- inspire new hypotheses vs. verify final truth
Arguments

- “avoid interaction” dictum controversial
 - part of power of computer-based methods
 - but can degenerate into human-powered search

- presentation/exposition vs. exploration

- art vs. science vs. technology
Credits

- Pat Hanrahan
 - graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding

- Torsten Möller, Melanie Tory
 - discussions