Lecture 1: Introduction
Information Visualization
CPSC 533C, Fall 2006

Tamara Munzner
UBC Computer Science

12 September 2006
Course Home Page

- main source
 - readings, lecture slides, all information
 - reload frequently, updates common!
- permanent URL
 - www.cs.ubc.ca/~tmm/courses/cpsc533c-06-fall
- shortcut
 - www.cs.ubc.ca/~tmm/courses/533
Course Design

- reading-intensive course
 - reading front-loaded in first 7 weeks
- oral presentations
 - major presentation
 - project update, project final
- writing
 - questions, proposal, final report
- programming
 - project course (unless do analysis option)
 - time management critical: staged development
- no problem sets or exams :)
- schedule
 - one week during term with no classes (Oct 31, Nov 2)
Course Structure Summary

▶ class participation: 25%
 ▶ questions 75%, discussion 25%
▶ presentation: 25%
▶ project: 50%

▶ most grading by buckets:
 ▶ great 100%, good 89%, ok 78%, poor 67%, zero 0%
Course Structure

- lectures/readings
 - weeks 1-7
 - professor lectures
 - all do core readings
 - submit questions for each lecture (19%)
 - discussion (6%)

- presentations (25%)
 - weeks 9-12
 - student presentations
 - only presenter does topic readings
 - discussion (6%)

- project (50%)
 - weeks 6-14
 - proposal 10%, update 10%, report 20%, presentation 10%, content 50%
Required Readings

- Ware
 - Information Visualization: Perception for Design
 - 2nd edition
- Tufte
 - Envisioning Information
- many papers
 - most are color PDF downloads from page
 - a few handed out in class as hardcopy
Participation

- 6%: discussions in class
 - both lectures and student presentations
- 19%: 5 questions on required readings
 - due at 9am Tue/Thu for day’s reading
- attendance expected
 - if you can’t attend: no credit if email after 9am
Questions

▶ questions or comments
▶ fine to be less formal than written report
 ▶ (correct grammar and spelling expected nevertheless)
▶ should be thoughtful, show you’ve read and reflected
 ▶ poor to ask something trivial to look up
 ▶ ok to ask for clarification of genuinely confusing section
▶ grading into buckets:
 ▶ great 100%, good 89%, ok 78%, poor 67%, zero 0%
Question Examples: Poor

- Well, what exactly Pad++ is? Is it a programming library or a set of API or a programming language? how can we use it in our systems, for example may be programming in TCL or OpenGL may be?
- I learned some from this paper and got some ideas of my project.
Question Examples: OK

- This seems like something fun to play around with, are there any real implementations of this? Has a good application for this type of zooming been found? Is there still a real need for this now that scroll wheels have become prevalent and most people don’t even use the scroll bar anymore?

- Playing with the applet, I find I like half of their approach. It’s nice to zoom out as my scroll speed increases, but then I don’t like the automatic zoom in when I stop scrolling. Searching the overview I found the location I wanted, but while I paused and looked at the overview, I fell back in to the closeup. I think they need to significantly dampen their curve.
It would be interesting to compare the approach in this paper to some other less-mathematically-thought-out zoom and pan solutions to see if it is really better. Sometimes “faking it” is perceived to be just as good (or better) by users.

The space-scale diagrams provided a clear intuition of why zooming out, panning then zooming in is a superior navigation technique. However, I found the diagram too cumbersome for practical use, especially for objects with zoom-dependent representations (Figure 11).
I’m curious as to what would have happened if the authors had simply preselected the values of the free parameters for the participants in their user study, and then had the users compare their technique to the standard magnification tools present in a ’normal’ application (much like the space-scale folks did). Could it be that the users are ‘manufacturing’ a large standard deviation in the free parameter specifications by settling for values that merely produce a local improvement in their ability to manipulate the interface, instead of actively searching for an optimal valuation scheme?

In a related vein, the speed-dependent automatic zooming met with mixed success on some applications. Isn’t this success related to how ”compressible” some information is? i.e. because zooming must necessarily throw out some information, it isn’t obvious which information to keep around to preserve the navigable structure.
Presentations

- second half of class
 - sign up by Oct 20
- material (exact numbers TBD, depending on enrollment)
 - XX papers from my suggestions
 - XX paper found on your own
- talk
 - slides required
 - not just outline!
 - critical points of papers
 - comparison and critique
- grading
 - per-paper: summary 70%, critique 30%
 - general: presentation style 50%, content preparation 50%
Projects

- choice 1: programming
 - common case
 - I will only consider supervising students who do programming projects

- choice 2: analysis
 - use existing tools on dataset
 - detailed domain survey
 - suitable for non-CS students

- stages
 - meetings with me Oct 17-20
 - proposal due Oct 27
 - update presentations Nov 14,16
 - final presentations Dec 14
 - final report Dec 15
Reserve Books

- Information Visualization: Perception for Design, Colin Ware (2nd ed)
- Readings in Information Visualization: Using Vision To Think; Card, Mackinlay, and Shneiderman, eds; Morgan Kaufmann 1999.
- The Visualization Toolkit, 2nd edition; Schroeder, Martin and Lorensen; Prentice Hall 1998
Information Visualization

- visual representation of abstract data
 - computer-generated, can be interactive
Interactivity

- static images
 - 10,000 years
 - art, graphic design
- moving images
 - 100 years
 - cinematography
- interactive graphics
 - 20 years
 - computer graphics, human-computer interaction
Information Visualization

- visual representation of abstract data
 - computer-generated, can be interactive
 - help human perform some task more effectively
Information Visualization

- visual representation of abstract data
 - computer-generated, can be interactive
 - help human perform some task more effectively
- bridging many fields
 - graphics: drawing in realtime
 - cognitive psych: finding appropriate representation
 - HCI: using task to guide design and evaluation
Information Visualization

» visual representation of abstract data
 » computer-generated, can be interactive
 » help human perform some task more effectively

» bridging many fields
 » graphics: drawing in realtime
 » cognitive psych: finding appropriate representation
 » HCI: using task to guide design and evaluation

» external representation
 » reduces load on working memory
 » offload cognition
 » familiar example: multiplication/division
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>paper</td>
<td>mental buffer</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>57 x 48</td>
<td>7 * 8 = 56</td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>[7*8=56]</td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>x 48</td>
<td>x 48</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td>[5 \times 8 = 40 + 5 = 45]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>paper</td>
<td>mental buffer</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>[7*4=28]</td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>[7*4=28]</td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>----</td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>[5 \times 4 = 20 + 2 = 22]</td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>456</td>
</tr>
<tr>
<td>x 48</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>[8 + 5 = 13]</td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>paper</td>
<td>mental buffer</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>x 48</td>
<td>456</td>
</tr>
<tr>
<td>228</td>
<td>36</td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>736</td>
</tr>
<tr>
<td></td>
<td>[4+2+1=7]</td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td>736</td>
<td></td>
</tr>
</tbody>
</table>
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
</tr>
<tr>
<td>2736</td>
<td></td>
</tr>
</tbody>
</table>
Information Visualization

- visual representation of abstract data
 - computer-generated, can be interactive
 - help human perform some task more effectively

- bridging many fields
 - graphics: drawing in realtime
 - cognitive psych: finding appropriate representation
 - HCI: using task to guide design and evaluation

- external representation
 - reduces load on working memory
 - offload cognition
 - familiar example: multiplication/division
 - infovis example: topic graphs
External Representation: Topic Graphs

<table>
<thead>
<tr>
<th>Turing - Halting problem</th>
<th>Halting problem - Decision procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halting problem - Infinity</td>
<td>BlooP and FlooP - AI</td>
</tr>
<tr>
<td>Paradoxes - Lewis Carroll</td>
<td>Halting problem - Unpredictably long searches</td>
</tr>
<tr>
<td>Paradoxes - Infinity</td>
<td>BlooP and FlooP - Unpredictably long searches</td>
</tr>
<tr>
<td>Infinity - Lewis Carroll</td>
<td>BlooP and FlooP - Recursion</td>
</tr>
<tr>
<td>Infinity - Unpredictably long searches</td>
<td>Tarski - Truth vs. provability</td>
</tr>
<tr>
<td>Infinity - Recursion</td>
<td>Tarski - Epimenides</td>
</tr>
<tr>
<td>Infinity - Zeno</td>
<td>Tarski - Undecidability</td>
</tr>
<tr>
<td>Infinity - Paradoxes</td>
<td>Paradoxes - Self-ref</td>
</tr>
<tr>
<td>Lewis Carroll - Zeno</td>
<td>...</td>
</tr>
<tr>
<td>Lewis Carroll - Wordplay</td>
<td>...</td>
</tr>
</tbody>
</table>

[Godel, Escher, Bach. Hofstadter 1979]
External Representation: Topic Graphs

- offload cognition to visual systems
- minimal attention to read answer

Diagram:

- Infinity
 - Zeno
 - Paradoxes
 - Halting problem
 - Turing
 - Decision procedures
 - Lewis Carroll
 - Wordplay
 - Epimenides
 - Self-ref
 - Tarski
 - Truth vs. provability
 - Undecidability
External Rep: Automatic Layout

manual: hours, days automatic: seconds

(Godel, Escher, Bach. Hofstader 79)

dot, (Gansner et al 93)
InfoVis vs. SciVis

- is spatialization *given* (scientific visualization) or *chosen* (information visualization)
 - my definition
- names are unfortunate historical accidents
 - not scivis iff data generated by scientists
 - infovis not unscientific
 - scivis not uninformative
 - but - too late to change
- infovis: how to represent
 - choosing, doing, evaluating
 - huge space of possibilities: random walk ineffective
 - need design guidelines
Lecture Topics
Design Studies
Focus+Context
Frameworks/Models

Quantitative
- Position
- Length
- Angle
- Slope
- Area
- Volume
- Density
- Saturation
- Hue
- Texture
- Connection
- Containment
- Shape

Ordinal
- Position
- Density
- Saturation
- Hue
- Texture
- Connection
- Containment
- Shape

Nominal
- Position
- Hue
- Texture
- Connection
- Containment
- Density
- Saturation
- Shape
- Length
- Angle
- Slope
- Area
- Volume
Perception
Space/Order

[Diagram showing data distribution across different locations.

Waseca
1932

Crookston
1932

Morris
1932

Wisconsin No. 38
No. 457
Glabron
Peatland
Velvet
No. 475
Manchuria
No. 462
Swansota

Waseca
1981

Crookston
1981

Morris
1981

Wisconsin No. 38
No. 457
Glabron
Peatland
Velvet
No. 475
Manchuria
No. 462
Swansota]
Depth/Occlusion
High Dimensionality
Guest Lecturer: Maureen Stone
Evaluation

Guest Lecturer: TBD

[Bar chart showing ratings for Comprehensibility, Ease of use, Speed of use, and Overall.]
Interaction
Navigation/Zooming
Graphs/Trees
More Guest Lectures

- stayed tuned, things may shuffle
Office Hours

▶ domains
 ▶ bioinformatics
 ▶ evolutionary trees
 ▶ genomic sequences
 ▶ protein-protein interaction
 ▶ computer science
 ▶ networking
 ▶ security
 ▶ cluster monitoring
 ▶ environmental sustainability
▶ techniques/projects
 ▶ Focus+Context
 ▶ multidimensional scaling
 ▶ scalable graph drawing
 ▶ evaluation

▶ 1:30-2:30 Tuesdays or by appointment
 ▶ office in X661, ICICS/CS