Lecture 8: High Dimensionality

Information Visualization
CPSC 533C, Fall 2006

Tamara Munzner

UBC Computer Science

5 October 2006
Readings Covered

Fast Multidimensional Scaling through Sampling, Springs and Interpolation Alistair Morrison, Greg Ross, Matthew Chalmers, Information Visualization 2(1) March 2003, pp. 68-77.

Parallel Coordinates

- only 2 orthogonal axes in the plane
- instead, use parallel axes!

Figure 3. Parallel Coordinate Plot of Six-Dimensional Data Illustrating Correlations of $\rho = 1, .8, .2, 0, -.2, -.8, \text{ and } -1.$

PC: Duality

- rotate-translate
- point-line
 - pencil: set of lines coincident at one point

[Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry. Alfred Inselberg and Bernard Dimsdale, IEEE Visualization ’90.]
PC: Axis Ordering

- geometric interpretations
 - hyperplane, hypersphere
 - points do have intrinsic order
- infovis
 - no intrinsic order, what to do?
 - indeterminate/arbitrary order
 - weakness of many techniques
 - downside: human-powered search
 - upside: powerful interaction technique
- most implementations
 - user can interactively swap axes
- Automated Multidimensional Detective
 - Inselberg 99
 - machine learning approach
[Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. Fua, Ward, and Rundensteiner, IEEE Visualization 99.]
Hierarchical Clustering

- proximity-based coloring
- interaction lecture later:
 - structure-based brushing
 - extent scaling

[Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. Fua, Ward, and Rundensteiner, IEEE Visualization 99.]
Dimensionality Reduction

- mapping multidimensional space into space of fewer dimensions
 - typically 2D for infovis
 - keep/explain as much variance as possible
 - show underlying dataset structure
 - multidimensional scaling (MDS)
- minimize differences between interpoint distances in high and low dimensions
Dimensionality Reduction: Isomap

- 4096 D: pixels in image
- 2D: wrist rotation, fingers extension

Naive Spring Model

- repeat for all points
 - compute spring force to all other points
 - difference between high dim, low dim distance
 - move to better location using computed forces
- compute distances between all points
 - $O(n^2)$ iteration, $O(n^3)$ algorithm
Faster Spring Model [Chalmers 96]

- compare distances only with a few points
 - maintain small local neighborhood set
Faster Spring Model [Chalmers 96]

- compare distances only with a few points
 - maintain small local neighborhood set
 - each time pick some randoms, swap in if closer
Faster Spring Model [Chalmers 96]

- compare distances only with a few points
 - maintain small local neighborhood set
 - each time pick some randoms, swap in if closer
Faster Spring Model [Chalmers 96]

- compare distances only with a few points
 - maintain small local neighborhood set
 - each time pick some randoms, swap in if closer
- small constant: 6 locals, 3 randoms typical
 - $O(n)$ iteration, $O(n^2)$ algorithm
Parent Finding [Morrison 02, 03]

- lay out a \sqrt{n} subset with [Chalmers 96]
- for all remaining points
 - find ”parent”: laid-out point closest in high D
 - place point close to this parent
- $O(n^{5/4})$ algorithm
Issues

- which distance metric: Euclidean or other?
- computation
 - naive: $O(n^3)$
 - better: $O(n^2)$ Chalmers 96
 - hybrid: $O(n\sqrt{n})$
True Dimensionality: Linear

- how many dimensions is enough?
 - could be more than 2 or 3
 - knee in error curve
- example
 - measured materials from graphics
 - linear PCA: 25
 - get physically impossible intermediate points

True Dimensionality: Nonlinear

- nonlinear MDS: 10-15
 - all intermediate points possible
- categorizable by people
 - red, green, blue, specular, diffuse, glossy, metallic, plastic-y, roughness, rubbery, greasiness, dustiness...

MDS Beyond Points

- galaxies: aggregation

- themescapes: terrain/landscapes

[www.pnl.gov/infoviz/graphics.html]
Cluster Stability

- display
 - also terrain metaphor
- underlying computation
 - energy minimization (springs) vs. MDS
 - weighted edges
- do same clusters form with different random start points?
- "ordination"
 - spatial layout of graph nodes
Approach

- normalize within each column
- similarity metric
 - discussion: Pearson’s correlation coefficient
- threshold value for marking as similar
 - discussion: finding critical value
Graph Layout

- criteria
 - geometric distance matching graph-theoretic distance
 - vertices one hop away close
 - vertices many hops away far
 - insensitive to random starting positions
 - major problem with previous work!
 - tractable computation

- force-directed placement
 - discussion: energy minimization
 - others: gradient descent, etc
 - discussion: termination criteria
Barrier Jumping

- same idea as simulated annealing
 - but compute directly
 - just ignore repulsion for fraction of vertices
- solves start position sensitivity problem
Results

- efficiency
 - naive approach: $O(V^2)$
 - approximate density field: $O(V)$
- good stability
 - rotation/reflection can occur

different random start adding noise
Critique

▶ real data
▶ suggest check against subsequent publication!
▶ give criteria, then discuss why solution fits
▶ visual + numerical results
▶ convincing images plus benchmark graphs
▶ detailed discussion of alternatives at each stage
▶ specific prescriptive advice in conclusion
Critique

- real data
 - suggest check against subsequent publication!
- give criteria, then discuss why solution fits
- visual + numerical results
 - convincing images plus benchmark graphs
- detailed discussion of alternatives at each stage
- specific prescriptive advice in conclusion
Dimension Ordering

- in NP, like most interesting infovis problems
- heuristic
- divide and conquer
 - iterative hierarchical clustering
 - representative dimensions
- choices
 - similarity metrics
 - importance metrics
 - variance
 - ordering algorithms
 - optimal
 - random swap
 - simple depth-first traversal
Spacing, Filtering

- same idea: automatic support
- interaction
 - manual intervention
 - structure-based brushing
 - focus+context, next week
Results: InterRing

- raw, order, distort, rollup (filter)

Results: Parallel Coordinates

- raw, order/space, zoom, filter

Results: Star Glyphs

- raw, order/space, distort, filter

Results: Scatterplot Matrices

- raw, filter

Critique

pro approach on multiple techniques,
real data!

con always show order then space then filter
hard to tell which is effective
show ordered vs. unordered after zoom/filter?
Critique

- pro
 - approach on multiple techniques,
 - real data!

- con
 - always show order then space then filter
 - hard to tell which is effective
 - show ordered vs. unordered after zoom/filter?
Software, Data Resources

www.cs.ubc.ca/~tmm/courses/infovis/resources.html