Readings Covered

Ware, Chapter 8: Space Perception and the Display of Data in Space
Tufte, Chapter 3: Layering and Separation

Further Readings

Depth and Occlusion

Space Perception

- static
 - occlusion
 - perspective projection
 - linear, texture gradient
 - depth of field
 - atmospheric (fog, depth cueing)
 - lighting and shadows
 - shape from shading
 - cast shadows
- moving
 - structure-from-motion
 - motion parallax (head motion)
- binocular
 - binocular disparity (stereopsis)
 - convergence
 - amount eyes rotate toward center of interest
 - like optical range finder

Layering And Separation

- visual layering
- 3DPS
- graphs embedding in 3D vs. 2D
- EdgeLens
 - interactive occlusion control of 2D graph edges

Visual Clutter

- subtler background than foreground

3DPS

- naive 2D -- 3D extension yields occlusion
 - same problem as van Wijk
- graph-based solution
 - move geometry according to viewpoint
 - magnify focus only
 - introduce curves into formerly straight lines
- focus+context approach

Critique

- sophisticated way to navigate 3D graphs
- purely technique paper
- not a design study
- interesting discussion I'd like to see
- more analysis of why 3D necessary
- cites Ware 3x improvement
- occlusion workaround vs. occlusion avoidance
- never shown on real data
- hard to draw conclusions from toy datasets

Information Density: Codimension

- want balance between clutter and void
- topological approach to describing density
- diff between structure and surrounding space

space structure

webviz 3 1 2 sparse
circle
H3 3 2 1 hemisphere
3DPS 3 3 0 dense cubic grid

Critique

- topological approach to describing density
- diff between structure and surrounding space

Results

- single, multiple foci

Results

- randomly positioned nodes instead of grid
- closer to real dataset

Page dimensions: 362.8x272.1
EdgeLens Final Algorithm
- decide which edges affected
- calculate displacements
- calculate spline control points
- draw curves

EdgeLens Techniques
- transparency, color

EdgeLens Results
- critique
 - very nice technique
 - compelling need
 - shown on real data

Cheops
- compact
- show paths through tree
- extreme occlusion deliberately
- browsing/exploration, not topological analysis

Cheops Interaction
- flip through overloaded visual representation choices

Cheops Critique
- pro
 - tiny footprint
- con
 - relatively hard to understand
 - singular nodes very salient, but not so important

Hierarchical Edge Bundles
- bundle by hierarchy using splines

Hierarchical Edge Bundles
- alpha blending
 - bundling strength

Hierarchical Edge Bundles
- (mostly) agnostic to layout

Project Resources