Color in Information Display

Maureen Stone
StoneSoup Consulting
What is Color?

Physical World Visual System Mental Models

Lights, surfaces, objects → Eye, optic nerve, visual cortex → Red, green, brown

Bright, light, dark, vivid, colorful, dull

Warm, cool, bold, blah, attractive, ugly, pleasant, jarring
Why Color?

Physical World	Visual System	Mental Models
Lights, surfaces, objects | Eye, optic nerve, visual cortex | Red, green, brown
Apple, leaf, bark
Ripe, fresh, eatable
…and then to action.
Color in Information Display

Physical World	Visual System	Mental Models
Lines, patches, shaded regions	Eye, optic nerve, visual cortex	Roads, lakes
		Profit, loss, trends
Illustrators, graph makers Artists, designers A few scientific principles
Failures, threats
...and then to action
Why Should We Care?

• Poorly designed color is confusing
 – Creates visual clutter
 – Misdirects attention
• Poor design devalues the information
 – Visual sophistication
 – Evolution of document and web design
• “Attractive things work better”

 – Don Norman
Effective Color

Aesthetics

Materials

Perception
Color Models

Physical World
- Light Energy
 - Spectral distribution functions $F(\lambda)$

Visual System
- Cone Response
 - Reduce to three values (LMS)
 - CIE tristimulus values (XYZ)

Mental Models
- Opponent Encoding
 - Separate Lightness, Chroma (A,R-G,Y-B)
- Perceptual Models
 - Unique White
 - CIELAB
 - Munsell (HVC)
- Appearance Models
 - Hue, chroma, saturation, colorfulness
 - lightness, brightness
 - CIECAM02
Visual System

• Light path
 – Cornea, pupil, lens, retina, optic nerve, brain

• Retinal cells
 – Rods and cones
 – Unevenly distributed

• Cones
 – Three “color receptors”
 – Concentrated in fovea
Cone Response

- Encode spectra as three values
- Long, medium and short (LMS)
- Trichromacy

Effects of Retinal Encoding

- All spectra that stimulate the same cone response are indistinguishable
- *Metameric match*
CIE Standard “Cones”

- CIE Color Matching Functions (CMF)
- CIE tristimulus values (XYZ)
- Foundation for color measurement

CIE Chromaticity Coordinates

Project X,Y,Z on a plane to separate colorfulness from brightness

\[
x = \frac{X}{X+Y+Z} \\
y = \frac{Y}{X+Y+Z} \\
z = \frac{Z}{X+Y+Z}
\]

\[1 = x + y + z\]

\[XYZ = xyY\]

Courtesy of PhotoResearch, Inc.
Tristimulus models (CIE XYZ)

- Absolute specification, based on cone response to a spectral stimulus
- **Single colors, neutral background, constant adaptation**
- Many different values for “white” and “black”
- **Do two colors match exactly?**
Color Models

Physical World
- Light Energy
- Spectral distribution functions \(F(\lambda) \)

Visual System
- Cone Response
 - Three numbers (LMS)
 - CIE tristimulus values (XYZ)

Mental Models
- Opponent Encoding
 - Separate Lightness, Chroma (A,R-G,Y-B)

Perceptual Models
- Unique White
- CIELAB
- Munsell

Appearance Models
- Hue, chroma, saturation
- Colorfulness
- Lightness, brightness
- CIECAM02

Trichromacy
Metamerism
Color matching
Opponent Color

• Definition
 – Achromatic axis
 – R-G and Y-B axis
 – Separate lightness from chroma channels

• Occurs in retina
Effects of Opponent Color

• Unique hues
 — No reddish-green
• Afterimages
 – Red-green, blue-yellow, black-white
• Color vision deficiencies
 – Red-green anomalies *
 – Blue-yellow anomalies
• Foundation for perceptual color spaces
Model “Color blindness”

• Flaw in opponent processing
 – Red-green common (deuteranope, protanope)
 – Blue-yellow possible (tritanope)
 – Luminance channel almost “normal”

• Effect is 2D color vision model
 – Flatten color space
 – Can be simulated (Brettel et. al.)
 – Vischeck (www.vischeck.com)
Vischeck (www.vischeck.com)

- Simulates color vision deficiencies
- Web service or Photoshop plug-in
- Robert Dougherty and Alex Wade
Genes in Vischeck

Deuteranope

Protanope
Perceptual Color Spaces

Lightness

Colorfulness

Hue

Unique black and white
Perceptual models

- Relative specification
- Unique values for “white” and “black”
- How similar are two colors?
Munsell Color

- Hue, Value, Chroma
 - 5 R 5/10 (bright red)
 - N 8 (light gray)

- Perceptually uniform

Munsell Renotation System maps between HVC and XYZ
Interactive Munsell Tool

• From www.munsell.com
CIELUV and CIELAB

- Lightness (L*), two color axis (u*, v*) or (a*, b*)
- Non-linear function of CIE XYZ
- Defined for computing color differences

From Principles of Digital Image Synthesis by Andrew Glassner. SF: Morgan Kaufmann Publishers, Fig. 2.4 & 2.5, Page 63 & 64 © 1995 by Morgan Kaufmann Publishers. Used with permission.
Lightness Scales

- Lightness, brightness, luminance, and L*
 - Lightness is relative, brightness absolute
 - Absolute intensity is light power (cd/m\(^2\))
- Luminance is perceived intensity
 - Luminance varies with wavelength
 - Luminous efficiency function
 - Equivalent to CIE Y

Green and blue lights of equal intensity have different luminance values
Psuedo-Perceptual Models

- HLS, HSV, HSB
- NOT perceptual models
- Simple renotation of RGB
 - View along gray axis
 - See a hue hexagon
 - L or V is grayscale pixel value
- Cannot predict perceived lightness
L vs. Luminance, L*

Corners of the RGB color cube

Luminance of these colors

L* for these colors

L from HLS All the same

All the same
Color Models

Physical World
- Light Energy
- Spectral distribution functions $F(\lambda)$

Visual System
- Cone Response
- Three numbers (LMS)
- CIE tristimulus values (XYZ)

Mental Models
- Opponent Encoding
- Separate Lightness, Chroma (A,R-G,Y-B)

Perceptual Models
- Unique White
- CIELAB Munsell (HVC)

Appearance Models
- Hue, chroma, saturation, colorfulness, lightness, brightness
- CIECAM02

Trichromacy
Metamerism
Color matching

Color differences
“Intuitive” color spaces
Image encoding
Color scales
2. Color Appearance
Color Appearance

• More than a single color
 – Adjacent colors (background)
 – Viewing environment (surround)
• Appearance effects
 – Adaptation
 – Simultaneous contrast
 – Spatial effects
Light/Dark Adaptation

• Adjust to overall brightness
 – 7 decades of dynamic range
 – 100:1 at any particular time

• Absolute illumination effects
 – Hunt effect
 Higher brightness increases colorfulness
 – Stevens effect
 Higher brightness increases contrast
Chromatic Adaptation

- Change in illumination
- Cones “white balance”
 - Scale cone sensitivities
 - von Kries
 - Also cognitive effects
- Creates unique white

From Color Appearance Models, fig 8-1
Simultaneous Contrast

“After image” of background adds to the color

Reality is more complex
Affects Lightness Scale
Effect of Spatial Frequency

- Smaller = less saturated
- The paint chip problem
- Color image perception
- S-CIELAB

Redrawn from *Foundations of Vision*, fig 6
© Brian Wandell, Stanford University
Color Appearance Models

• From measurements to color appearance
 • Models
 – CIELAB, RLAB, LLAB
 – S-CIELAB
 – CIECAM97s, CIECAM02
 – Hunt
 – Nayatani, Guth, ATG

Measure physical stimuli
 Stimulus, background, surround, etc.

Calculate tristimulus values XYZ (LMS)
 Stimulus, background, surround, etc.

Calculate correlates of perceptual attributes
 Lightness, brightness, chroma, hue, colorfulness, saturation
Color Models

Physical World
- Light Energy
- Spectral distribution functions $F(\lambda)$
- Trichromacy
- Metamerism
- Color matching

Visual System
- Cone Response
- Three numbers (LMS)
- CIE tristimulus values (XYZ)
- Color differences
- "Intuitive" color spaces
- Image encoding
- Color scales

Mental Models
- Opponent Encoding
- Separate Lightness, Chroma (A,R-G,Y-B)
- Perceptual Models
- Unique White
- CIELAB
- Munsell (HVC)
- Appearance Models
- Hue, chroma, saturation, colorfulness, lightness, brightness
- CIECAM02
- Adaptation
- simultaneous contrast
- Image appearance
- Complex matching
Effective Color

- Aesthetics
- Perception
- Materials
Design Basics

• Four basic principles
 – Proximity: Related items should be close
 – Alignment: Create visual connections
 – Repetition: Unify by reusing elements
 – Contrast: Identical, or very different

• Practice
 – Visual literacy
 – Design experience
Color Design Basics

• Basic principles
 – Contrast & analogy (contrast, proximity)
 – Color schemes & palettes (repetition, alignment)
 – “Get it right in black and white”

• Practice
 – Visual literacy
 – Design experience
Color “Space”

- **Value**
 - Perceived lightness

- **Hue**
 - Color’s “name”
 - Color wheel

- **Chroma**
 - Intensity or purity with respect to gray
 - Similar to saturation

Munsell Color Space

Principles of Color Design
Wucius Wong
Value

- Perceived lightness/darkness of a color
- Scale from black to white
 - Power scale
 - Munsell value, L*
- Single most important factor in color design
Get it right in black and white

- Value alone defines shape
 - No edge without lightness change
 - No shading without lightness variation
- Value difference defines contrast
 - Defines legibility
 - Controls attention
Controls Legibility

Larry Arend, colorusage.arc.nasa.gov

Drop Shadows

Need an edge
Controls Attention, Clutter
A Brief Plug