Visual Language is a Sign System

Image perceived as set of signs

Sender encodes information in these signs

Receiver decodes information from these signs

Frameworks

- Data, Tasks
- Data Types, Marks, Retinal Attributes (incl Position)
- Table Algebra ←→ Visual Interface
- Data/Conceptual Models

Readings

The Structure of the Information Visualization Design Space

Shneiderman, Jack Mackinlay. Proc. InfoVis 97

The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations, Ben Shneiderman, Proc. 1996 BEE Visual Languages, also Maryland ICS TR 96-13

Mapping

input
- data semantics
- use domain knowledge

output
- visual encoding
 - visual/graphical/perceptual/retinal
 - channels/attributes/dimensions/variables
 - use human perception

processing
- algorithms
- handle computational constraints
Bertin: Semiology of Graphics

- geometric primitives: marks
 - points, lines, areas, volumes
- parameters control mark appearance
- separable channels flowing from retina to brain

[1, y] position
- size
- grayscale
- color
- texture
- orientation
- shape

Design Space = Visual Metaphors

![Design Space Diagram]

Data Types

- continuous (quantitative)
 - 10 inches, 17 inches, 23 inches
- ordered (ordinal)
 - small, medium, large
 - days: Sun, Mon, Tue, Wed, ...
- categorical (nominal)
 - apples, oranges, bananas

More Data Types: Stevens

- subdivides quantitative further:
 - interval: 0 location arbitrary
 - time: seconds, minutes
 - ratio: 0 fixed
 - physical measurements: Kelvin temp

[S.S. Stevens, On the theory of scales of measurements, Science 103:2694-2694, 1944]

Channel ranking varies by data type

Spatial position varies best for all types

[1, After, Automating the Design of Graphical Presentations of Numerical Information, ACM TCG'91. 1991]
Mackinlay, Card

Data Variables
- 1D, 2D, 3D, 4D, 5D, etc

Data Types
- nominal, ordered, quantitative

Marks
- point, line, area, surface, volume
- geometric primitives

Retinal Properties
- size, brightness, color, texture, orientation, shape
- parameters that control the appearance of geometric primitives
- separable channels of information flowing from retina to brain

Closest thing to central dogma we've got

Shneiderman's Data+Tasks Taxonomy

Data
- 1D, 2D, 3D, temporal, nD, trees, networks
- text and documents (Hamran)

Tasks
- Overview, Zoom, Filter, Details-on-demand,
- Relate, History, Extract

data alone not enough: what do you need to do?

[Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations]

Data Models vs. Conceptual Models

data model: mathematical abstraction
- set with operations
- e.g. integers or floats with *, +

conceptual model: mental construction
- includes semantics, support data
- e.g. navigating through city using landmarks

Models Example

from data model
- 17, 25, 4, 28.6 (floats)

using conceptual model
- (temperature)

to data type
- burned vs. not burned (N)
- hot, warm, cold (O)
- continuous to 4 sig figures (Q)

using task
- making toast
- classifying showers
- finding anomalies in local weather patterns

Time

2D vs. 3D
- same or different? depends on POV
 - time as input data?
 - time as visual encoding?

same
- time just one kind of abstract input dimension

different
- input semantics
- visual encoding: spatial position vs. temporal change

processing might be different
- e.g. interpolate differently across times than across spatial position

Polaris

infovis spreadsheet

- table cell
- not just numbers: graphical elements
- wide range of retinal variables and marks
- extends Wilkinson

- table algebra --> interactive interface
- formal language
Mackinlay’s Expressiveness Criteria

Expressiveness

A set of facts is expressible in a visual language if the sentences in that language can express all the relationships in the input data, and only the facts in the data.

Cannot Express the Facts

A 1-N relation cannot be expressed in a single horizontal dot plot because multiple topics are mapped to the same position.

Expresses Facts Not in the Data

A length is interpreted as a quantitative value. Length says something untrue about N data points.

Automatic Design

Mackinlay, APT
Roth et al, SAGE

Select visualization automatically given data
vs. Polaris: user drag and drop exploration
limited set of data, encodings
 - scatterplots, bar charts, etc
holy grail
 - entire parameter space

Summary

Formal approach to picture specification
- Declare the picture you want to see
- Compile query, analyze, and rendering commands needed to make the picture
- Automatically generate presentations
- Searching over the space of designs
Berlin’s vision still not complete
 - Formalize data model
 - Formalize the specifications
 - Experimentally test perceptual assumptions
Much more research to be done in this area...
Value of Vis

\[I(t) = V(D,S,t) \]
- Data D transformed by spec S into time-varying image
- \(dK/dt = P(I,K) \)
- Perception P of image by user increases knowledge K

\[S(t) = S_0 + \text{integral} \ E(k) \]
- Interactive exploration \(E \) changes spec

Cost model

costs
- \(C.I.S.O \) : initial development costs
- \(C.u.S,I \) : initial per-user costs
- \(C.s,S,O \) : initial per-session costs
- \(C.e \) : perception and exploration costs

benefit
- \(G = \text{nnM}(\text{deltaK}) \)

profit
- \(F = G - C \)
- \(F = \text{nnM}(\text{deltaK}) - C.s - \text{kC}_c - C.j - \text{mC}_u \)

Arguments

- new methods not better by definition
- vis not good by definition
- must show why automated extraction insufficient
 - e.g., automation not foolproof
- if no clear patterns
 - method limitation?
 - wrong parameters?
 - or truly not there in data?
- inspire new hypotheses vs. verify final truth
 - avoid interaction' dictum controversial
 - part of power of computer-based methods
 - but can degenerate into human-powered search
- presentation/exposition vs. exploration
 - art vs. science vs. technology

Credits

Pat Hanrahan
 (graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding)

Torsten Moeller, Melanie Tory
 - discussions