Questions

5 questions for the day, not 5 per reading!

ASCII text not Word attachments

audience: up to you
 · author, professor, yourself, classmates, ...
Papers Covered

Design Study

describe task

justify solution

refine until satisfied
Design Study Definition

Design study papers explore the choices made when applying infovis techniques in an application area, for example relating the visual encodings and interaction techniques to the requirements of the target task. Although a limited amount of application domain background information can be useful to provide a framing context in which to discuss the specifics of the target task, the primary focus of the case study must be the infovis content. Describing new techniques and algorithms developed to solve the target problem will strengthen a design study paper, but the requirements for novelty are less stringent than in a Technique paper.

InfoVis03 CFP, [infovis.org/infovis2003/CFP]
Time-series Data Analysis

data: N pairs of (value, time)
 · N large: 50K

tasks
 · find standard day patterns
 · find how patterns distributed over year, week, season
 · find outliers from standard daily patterns
 · want overview first, then detail on demand

possibilities
 · predictive mathematical models
details lost, multiscale not addressed
 · scale–space approaches (wavelet, fourier, fractal)
hard to interpret, known scales lost
 · 3D mountain: x hours, y value, z days

excellent example, emulate for project writeups!
3D Time-series Data

3D extrusion pretty but not useful
- daily, weekly patterns hard to see
Hierarchical Clustering

start with all M day patterns
 · compute mutual differences, merge most similar:
 M–1
 · continue up to 1 root cluster
result: binary hierarchy of clusters
choice of distance metrics
dendrogram display common
 · but shows structure of hierarchy, not time
distribution
Link Clusters and Calendar

2D linked clusters-calendars shows patterns

- number of employees:
- office hours, fridays in/and summer, school break
- weekend/holidays, post-holiday, santa claus

[van Wijk and van Selow, Cluster and Calender based Visualization of Time Series Data, InfoVis99, Figure 4, http://www.win.tue.nl/~vanwijk/clv.pdf]
Power Consumption

[van Wijk and van Selow, Cluster and Calendar based Visualization of Time Series Data, InfoVis99, Figure 5, http://www.win.tue.nl/~vanwijk/clv.pdf]
van Wijk Lessons

derived space: clusters
visual representation of time: calendar
 • linked display
 • interactive exploration

clear task analysis guided choices
 • reject standard 3D extrusion
 • reject standard dendrogram

critique
 • color choice not so discriminable especially legend
Multilevel Call Matrices, van Ham

large software project, implementation vs. spec

link matrix vs. node network

[van Ham, Using Multilevel Call Matrices in Large Software Projects. InfoVis03
Matrices

uniform, recursive, stable

subdivide by

- total component count
- visible subcomponent count

[van Ham, Using Multilevel Call Matrices in Large Software Projects. InfoVis03
Zooming

abstraction levels

linear interpolation plus crossfade trajectories: will read van Wijk 03 in week 6

[van Ham, Using Multilevel Call Matrices in Large Software Projects. InfoVis03
Additional Encoding

color: call allowed by spec

color: local region closest red

transparency: call density

histograms: size distribution

Tasks Successfully Supported

visual categorization
 · i.e. libraries with mostly incoming calls

previous summary shown to be incomplete

spotting unwanted calls

determining component dependencies
Linguistic Networks, Munzner

data: MindNet query results

definition graph
 · dictionary entry sentence
 · nodes: word senses
 · links: relation types

```
kangaroo100 (@000000099.7)
  Hyp>
     marsupial100 1.1668e-007
     Mod>
        herbivorous102 2.1727e-010
  Locn>
     island107 1.1668e-007
     Mod>
        adjacent103 9.5719e-010
  Part>
     forelimb100 1.1695e-007
     Mod>
        short104 1.4191e-009
        hind_limb100 1.1695e-007
     Mod>
        large110 6.5013e-010
   <Part>
   Purp>
      leap111 1.1722e-007
      tail101 1.1668e-007
   <Tobj>
      adapt104 1.1668e-007
```
Semantic Network

definition graphs used as building blocks

unify shared words

large network

- millions of nodes
- grammar checking now, translation future
- global structure known: dense

probes return local info
Path Query

best N paths between two words

words on path itself

kangaroo100 → Part → forelimb100 → Mod → short104 → Join → short ← Mod → tail100

definition graphs used in computation

kangaroo100 (vole101 tapir100 s;
sharp-tailed_grouse100 scut100 r;
pitta100 partridge104 lynx100 lo-
ingfisher100 horned_toad100 haw
bobtail101 bobtail100 bobcat100 :
Scottish_terrier100)
Task: Plausibility Checking

paths ordered by computed plausibility

researcher hand-checks results

- high-ranking paths believable?
- believable paths high-ranked?
- are stop words all filtered out?
Top 10 Paths Kangaroo→Tail

Number of paths: 10

Similarity score: 0.00068368 (< 0.0015 - the words are not similar)

1. 1.1668e-007 kangaroo100—Purp→tail101 kangaroo100
2. 6.4417e-014 kangaroo100—Hyp→marsupial100—Hyp→Tasmanian_devil100—Part→tail101 kangaroo100 Tasmanian_devil100
3. 4.9545e-014 kangaroo103—Hyp→animal109—Part→tail101 kangaroo103 (taper103 tail127 tail111 tag114 switch115 dock111 chipmunk102)
4. 4.2954e-014 kangaroo100—Hyp→marsupial100—Hyp→cuscus100—Part→tail101 kangaroo100 cuscus100
5. 1.2972e-014 kangaroo100—Part→forelimb100—Mod→short104—Join→short<Mod→tail100 kangaroo100 (voile101 tapir100 w' sharp-tailed_grouse100 scut100 r- pitta100 partridge104 lynx100 lo- kingfisher100 horned_toad100 haw- bottail101 bottail100 bobcat100 : Scottish_terrier100)
6. 5.6234e-015 kangaroo103—Hyp→wallaroo100—Part→fur112—Join→fur113—Mod→tail132 wallaroo100 (phalanger100 ermine- tail111)
7. 2.4774e-015 kangaroo100 (wolverine100 Old_English_sheepdog-
8. 1.5560e-015 island107 1.1668e-007
9. 1.5488e-015 adjacent103 9.5719e-010
10. 1.1220e-015 forelimb100 1.1695e-007

kangaroo100 (@00000099.7)
Hyp> marsupial100 1.1668e-007
 Mod> herbivorous102 2.1727e-010
Locn> island107 1.1668e-007
 Mod> adjacent103 9.5719e-010
Part> forelimb100 1.1695e-007
 Mod> short104 1.4191e-009
hind_lim100 1.1695e-007
 Mod> large110 6.5013e-010
<Part Macropodidae_of_Australia
Purp> leap111 1.1722e-007
 tail101 1.1668e-007
<Tobj adapt104 1.1668e-007
Goal

create a unified view of relationships between paths and definition graphs

- shared words are key
- thousands of words (not millions)

special purpose algorithm debugging tools

- not understand structure of English
Constellation Video
Traditional Layout

avoid crossings

reason: avoid false attachments

ambiguity

artifact salience
Information Visualization Approach

spatial position is strongest perceptual cue
- encode domain specific attribute
- plausibility gradient
Constellation Semantic Layout

novel layout algorithm

- paths as backbone, definition graphs attached
- curvilinear grid
- iterative design for maximum semantics with reasonable information density

allow crossings for long-distance proxy links
Selective Emphasis

highlight sets of boxes and edges
 - interaction
 - additional perceptual channels

avoid perception of false attachments
Hidden State

avoid hidden state

· change salience instead of toggle drawing

why? closed world assumption

· implicit assumption: if not visible, doesn't exist

· easy to forget previous actions

draw false negative conclusions
Single vs. Multiple Word Instances
Information Density

early prototype: poor
Information Density
design tradeoff with visual salience
Information Density

grid adjustment
Task-oriented design

previous methods
Task-oriented design

task-specific methods

[graphics.stanford.edu/papers/munzner_thesis/html/node10.html#layoutefffig]