Information Visualization

Lecture 1 CPSC 533C, Fall 2005

12 September 2005

Tamara Munzner
Course Home Page

permanent URL
 · www.cs.ubc.ca/~tmm/courses/cpsc533c-05-fall

shortcut
 · www.cs.ubc.ca/~tmm/courses/533

reload frequently, updates common!
Course Structure

first part
 · professor lectures
 · all do core readings

second part
 · student presentations
 · presenter does topic readings

requirements
 · project: 50%
 proposal 10%, update 10%, report 20%,
 presentation 10%, content 50%
 · presentation: 25%
 · class participation: 22%
 questions 75%, discussion 25%
 · small assignment: 3%
Projects

choice 1: programming
 · common case
 · I will only consider supervising students who do
 programming projects

choice 2: analysis
 · use existing tools on dataset
 · detailed domain survey
 · suitable for non-CS students

stages
 · meeting with me in person before proposal writeup
 · proposal Nov 4
 · update presentations Nov 16
 · final present Dec 19
 · final report Dec 20
Presentations

second half of class

sign up by Oct 20

material (exact numbers TBD, depending on enrollment)

- XX papers from my suggestions
- XX paper found on your own

talk

- chance to refine your public speaking skills
- slides required
- critical points of papers
- comparison and critique
- not just outline!
Participation

7%: discussions in class
 - both lectures and student presentations

15%: 5 questions on required readings
 - due at 10am Mon/Wed for afternoon's reading

 - if you can't attend: credit for email by 10am
Required Readings

Ware
Information Visualization: Perception for Design
· 2nd edition

Tufte
Envisioning Information

many papers
· most are color PDF downloads from page
· a few handed out in class as hardcopy
Reserve Books

Information Visualization: Perception for Design, Colin Ware

Readings in Information Visualization: Using Vision To Think; Card, Mackinlay, and Shneiderman, eds; Morgan Kaufmann 1999.

The Visualization Toolkit, 2nd edition; Schroeder, Martin and Lorensen; Prentice Hall 1998
Course Design

reading-intensive course
 · most of reading front-loaded in first 8 weeks
oral presentations
 · small assignment next class
 · major presentation
 · project update, project final
writing
 · questions, proposal, final report
programming
 · project course (unless do analysis option)
 · time management critical: staged development
no problem sets :)
schedule
 · two weeks during term with no classes
 · run one week into final exam period
Information Visualization

visual representation of abstract data
 · computer-generated, can be interactive
Interactivity

static images
 · 10,000 years
 · art, graphic design

moving images
 · 100 years
 · cinematography

interactive graphics
 · 20 years
 · computer graphics, human–computer interaction
Information Visualization

visual representation of abstract data
• computer-generated, can be interactive
• help human perform some task more effectively
Information Visualization

visual representation of abstract data
 · computer-generated, can be interactive
 · help human perform some task more effectively

bridging many fields
 · graphics: drawing in realtime
 · cognitive psych: finding appropriate representation
 · HCl: using task to guide design and evaluation

external representation
 · reduces load on working memory
 · offload cognition
 · familiar example: multiplication/division
External Representation: multiplication

paper mental buffer

\[
57 \times 48
\]
External Representation: multiplication

paper mental buffer

\[\begin{array}{c}
57 \\
\times 48 \\
\hline
\end{array} \] \quad \quad \quad \quad \quad [\, 7 \times 8 = 56 \,]
External Representation: multiplication

paper mental buffer

\[
\begin{array}{c}
5 \\
57 \\
\times 48 \quad [7 \times 8 = 56] \\
\hline
6
\end{array}
\]
External Representation: multiplication

paper

\[
\begin{array}{c}
5 \\
57 \\
\times 48 \\
\hline \\
6
\end{array}
\]

mental buffer

\[5 \times 8 = 40 + 5 = 45\]
External Representation: multiplication

paper mental buffer

\[57 \times 48 = 5 \times 8 + 40 + 5 = 45]

456
External Representation: multiplication

paper mental buffer

\[
\begin{array}{c}
57 \\
\times 48 \\
\hline
456
\end{array}
\quad [7\times4 = 28]
\]
External Representation: multiplication

\[
\begin{array}{c}
2 \\
57 \\
\times 48 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
456 \\
8 \\
\hline
8
\end{array}
\]

[7\times4=28]
External Representation: multiplication

paper

\[
\begin{array}{c}
 \underline{2} \\
 \underline{57} \\
\times \underline{48} \\
\hline
 \underline{456} \\
 \underline{8} \\
\end{array}
\]

[\text{mental buffer}]

\[5 \times 4 = 20 + 2 = 22\]
External Representation: multiplication

paper mental buffer

\[
\begin{array}{c}
57 \\
\times 48 \\
______\\
456 \\
228
\end{array}
\]

[5*4=20 + 2 =22]
External Representation: multiplication

paper mental buffer

\[
\begin{array}{c}
57 \\
\times 48 \\
\end{array}
\]

\[
\begin{array}{c}
456 \\
228 \\
\end{array}
\]

\[
\begin{array}{c}
6 \\
\end{array}
\]
External Representation: multiplication

57
\times 48

456
228

6

[8+5 = 13]
External Representation: multiplication

57
x 48

1
456
228

36

[8 + 5 = 13]
External Representation: multiplication

paper mental buffer

\[
\begin{align*}
57 \\
\times 48 \\
\hline
1 \\
456 \\
\hline
228 \\
\hline
36
\end{align*}
\]

\[4 + 2 + 1 = 7\]
External Representation: multiplication

paper

mental buffer

\[\begin{array}{c}
57 \\
\times 48 \\
\end{array} \]

\[\begin{array}{c}
456 \\
258 \\
\hline
736 \\
\end{array} \] \quad [4+2+1=7]
External Representation: multiplication

paper mental buffer

\[
\begin{array}{c}
57 \\
\times 48 \\
\hline
456 \\
258 \\
\hline
2736
\end{array}
\]
Information Visualization

visual representation of abstract data
 - computer-generated, can be interactive
 - help human perform some task more effectively

bridging many fields
 - graphics: drawing in realtime
 - cognitive psych: finding appropriate representation
 - HCl: using task to guide design and evaluation

external representation
 - reduces load on working memory
 - offload cognition
 - familiar example: multiplication/division
 - infovis example: topic graphs
External Representation: Topic Graphs

[Godel, Escher, Bach. Hofstadter 1979]

Paradoxes – Lewis Carroll
Turing – Halting problem
Halting problem – Infinity

Paradoxes – Infinity
Infinity – Lewis Carroll
Infinity – Unpredictably long searches
Infinity – Recursion
Infinity – Zeno

Paradoxes

Lewis Carroll – Zeno
Lewis Carroll – Wordplay

Halting problem – Decision procedures
BlooP and FlooP – AI
Halting problem – Unpredictably long searches
BlooP and FlooP – Unpredictably long searches
BlooP and FlooP – Recursion
Tarski – Truth vs. provability
Tarski – Epimenides
Tarski – Undecidability
Paradoxes – Self-ref

[...]

30
External Representation: Topic Graphs

offload cognition to visual systems
minimal attention to read answer
External Rep: Automatic Layout

manual: hours, days

automatic: seconds

[Godel, Escher, Bach. Hofstader 79]

dot, [Gansner et al 93]
InfoVis vs. SciVis

is spatialization given (scientific visualization) or chosen (information visualization)
 - my definition

names are unfortunate historical accidents
 - not scivis iff data generated by scientists
 - infovis not unscientific
 - scivis not uninformative
 - but – too late to change

infovis: how to represent
 - choosing, doing, evaluating
 - huge space of possibilities: random walk ineffective
 - need design guidelines
My Current Interests

domains
· evolutionary trees
· genomic sequences
· transaction logs
· environmental sustainability
· power grid control

techniques/projects
· accordion drawing
· multidimensional scaling
· scalable graph drawing
· evaluation

InfoVis Symposium organization
· Program Co-Chair 2003, 2004
· Posters Co-Chair 2001, 2002
Lecture Topics
Design Studies
Overviews / Context
Frameworks/Models

Quantitative
- Position
- Length
- Angle
- Slope
- Area
- Volume
- Density
- Saturation
- Hue
- Texture
- Connection
- Containment
- Shape

Ordinal
- Position
- Density
- Saturation
- Hue
- Texture
- Connection
- Containment
- Length
- Angle
- Slope
- Area
- Volume
- Shape

Nominal
- Position
- Hue
- Texture
- Connection
- Containment
- Density
- Saturation
- Shape
- Length
- Angle
- Slope
- Area
- Volume
Color

Guest Lecturer: Maureen Stone
Depth/Occlusion
High Dimensionality
Interaction
Navigation/Zooming
Graphs/Trees
Evaluation

Guest Lecturer: Melanie Tory
Scientific Visualization

Guest Lecturer: Melanie Tory
More Guest Lectures

stayed tuned, things may shuffle
Assignment 1

find and critique two images
 · one good visualization
 · one bad visualization

make web page, send me URL by 10am Wed
 · pictures, two paragraphs for each
 · first par: story
 · second par: specific critique
 accessibility
 clarity
 accuracy
 other important design criteria
 · send to tmm@cs.ubc.ca

be prepared to concisely present in class
 < 5 min
Assignment 1

sources
 · textbook
 · journal
 Journal of Applied Optics, ...
 · science magazine
 Nature, Science, Scientific American, ...
 · news magazine or newspaper
 Newsweek, Economist, NY Times, USA Today, ...

domains
 · mathematics
 · physical sciences
 astronomy, physics, chemistry, ...
 · biological sciences
 ecology, medicine, bioinformatics, ...
 · social sciences
 economics, crime statistics, ...