Information Visualization
Lecture 1 CPSC 533C, Fall 2005
12 September 2005
Tamara Munzner

Course Home Page
permanent URL
- www.cs.ubc.ca/~tmm/courses/cpsc533c-05-fall
shortcut
- www.cs.ubc.ca/~tmm/courses/533
reload frequently, updates common!

Course Structure
first part
- professor lectures
- all do core readings
second part
- student presentations
- presenter does topic readings
requirements
- project: 50%
- proposal 10%, update 10%, report 20%,
- presentation 10%, content 50%
- presentation: 25%
- class participation: 22%
- questions 75%, discussion 25%
- small assignment: 3%

Projects
choice 1: programming
- common case
- I will only consider supervising students who do
 programming projects
choice 2: analysis
- use existing tools on dataset
- detailed domain survey
- suitable for non-CS students
stages
- meeting with me in person before proposal writeup
- proposal Nov 4
- update presentations Nov 16
- final present Dec 19
- final report Dec 20

Presentations
second half of class
sign up by Oct 20
material (exact numbers TBD, depending on
-enrollment)
- XX papers from my suggestions
- XX paper found on your own
talk
- chance to refine your public speaking skills
- slides required
- critical points of papers
- comparison and critique
- not just outline!

Participation
7%: discussions in class
- both lectures and student presentations
15%: 5 questions on required readings
- due at 10am Mon/Wed for afternoon's reading
- if you can't attend: credit for email by 10am
Required Readings

- Ware
 - Information Visualization: Perception for Design
 - 2nd edition

- Tufte
 - Envisioning Information

- many papers
 - most are color PDF downloads from page
 - a few handed out in class as hardcopy

Reserve Books

- Information Visualization: Perception for Design, Colin Ware
- Readings in Information Visualization: Using Vision To Think, Card, Mackinlay, and Shneiderman, eds; Morgan Kaufmann 1999.
- The Visualization Toolkit, 2nd edition; Schroeder, Martin and Lorensen; Prentice Hall 1998

Course Design

- reading-intensive course
- most of reading front-loaded in first 8 weeks
- oral presentations
- small assignment next class
- major presentation
- project update, project final writing
- questions, proposal, final report
- programming
 - project course (unless do analysis option)
 - time management critical: staged development
- no problem sets :) schedule
 - two weeks during term with no classes
 - run one week into final exam period

Information Visualization

- visual representation of abstract data
 - computer-generated, can be interactive

Interactivity

- static images
 - 10,000 years
 - art, graphic design

- moving images
 - 120 years
 - cinematography

- interactive graphics
 - 20 years
 - computer graphics, human-computer interaction

Information Visualization

- visual representation of abstract data
 - computer-generated, can be interactive
 - help human perform some task more effectively
External Representation: multiplication

\[\frac{57}{48} \times \frac{57}{48} \]

External Representation: multiplication

\[\frac{57}{48} \times \frac{57}{48} \]

External Representation: multiplication

\[\frac{57}{48} \times \frac{57}{48} \]
External Representation: multiplication

\[
\begin{array}{c}
57 \\
\times 48 \\
\hline
456 \\
228 \\
\end{array}
\]

\[5 \times 4 = 20 + 2 = 22\]

External Representation: multiplication

\[
\begin{array}{c}
57 \\
\times 48 \\
\hline
456 \\
228 \\
\end{array}
\]

\[5 \times 4 = 20 + 2 = 22\]

External Representation: multiplication

\[
\begin{array}{c}
57 \\
\times 48 \\
\hline
456 \\
228 \\
\end{array}
\]

\[5 \times 4 = 20 + 2 = 22\]

External Representation: multiplication

\[
\begin{array}{c}
57 \\
\times 48 \\
\hline
456 \\
228 \\
\end{array}
\]

\[8 + 5 = 13\]
External Representation: multiplication

57
x 48
36

[8 + 5 = 13]

Information Visualization

visual representation of abstract data
- computer-generated, can be interactive
- help human perform some task more effectively

bridging many fields
- graphics, drawing in realtime
- cognitive psychology: finding appropriate representation
- HCI: using task to guide design and evaluation

external representation
- reduces load on working memory
- offline cognition
- familiar example: multiplication/division
- infovis example: topic graphs

External Representation: Topic Graphs

[Gödel, Escher, Bach: Hofstadter 1979]

Paradoxes – Lewis Carroll
Turing – Halting problem
Halting problem – Infinity
Paradoxes – Infinity
Infinity – Lewis Carroll
Infinity – Unpredictably long searches
Infinity – Recursion
Infinity – Zero
Infinity – Paradoxes
Lewis Carroll – Zero
Lewis Carroll – Wordplay

Halting problem = Decision procedures
BlooP and FlooP = At
Halting problem = Unpredictably long searches
BlooP and FlooP = Unpredictably long searches
BlooP and FlooP = Recursion
Tarski – Truth vs. provability
Tarski – Epimenides
Tarski – Undecidability
Paradoxes – Self-ref
External Representation: Topic Graphs
offload cognition to visual systems
minimal attention to read answer

External Rep: Automatic Layout
manual: hours, days
automatic: seconds

![Graph Example]

InfoVis vs. SciVis
is spatialization given (scientific visualization)
or chosen (information visualization)
- my definition
- names are unfortunate historical accidents:
 - not scivis iff data generated by scientists
 - infovis not unscientific
 - but too late to change
- infovis: how to represent:
 - choosing, doing, evaluating
 - huge space of possibilities: random walk ineffective
 - need design guidelines

My Current Interests
- domains:
 - evolutionary trees
 - genomic sequences
 - transaction logs
 - environmental sustainability
 - power grid control
- techniques/projects:
 - accordion drawing
 - multidimensional scaling
 - scalable graph drawing
 - evaluation
- InfoVis Symposium organization:
 - Program Co-Chair 2001, 2004
 - Posters Co-Chair 2001, 2002

Lecture Topics

Design Studies
Overviews/Context

Frameworks/Models

Color
Guest Lecturer: Maureen Stone

Perception

Space/Order

Depth/Occlusion
More Guest Lectures

stayed tuned, things may shuffle

Assignment 1

find and critique two images
 · one good visualization
 · one bad visualization

make web page, send me URL by 10am Wed
 · pictures, two paragraphs for each
 · first par: story
 · second par: specific critique
 · accessibility
 · clarity
 · accuracy
 · other important design criteria
 · send to tmm@cs.ubc.ca

be prepared to concisely present in class
 ≤ 5 min

Assignment 1

sources
 · textbook
 · journal
 · Journal of Applied Optics, ...
 · science magazine
 · Nature, Science, Scientific American, ...
 · news magazine or newspaper
 · Newsweek, Economist, NY Times, USA Today ...

domains
 · mathematics
 · physical sciences
 · astronomy, physics, chemistry, ...
 · biological sciences
 · ecology, medicine, bioinformatics, ...
 · social sciences
 · economics, crime statistics, ...