User Centered Design and Evaluation
Overview

- My evaluation experience
- Why involve users at all?
- What is a user-centered approach?
- Evaluation strategies
 - Examples from “Snap-Together Visualization” paper
Empirical comparison of 2D, 3D, and 2D/3D combinations for spatial data
Development and evaluation of a Volume visualization interface
Collaborative visualization on a tabletop
Why involve users?

“Darn these hooves! I hit the wrong switch again! Who designs these instrument panels, raccoons?”
Why involve users?

- Understand the users and their problems
 - Visualization users are experts
 - We do not understand their tasks and information needs
 - Intuition is not good enough

- Expectation management & ownership
 - Ensure users have realistic expectations
 - Make the users active stakeholders
What is a user-centered approach?

- Early focus on users and tasks
- Empirical measurement: users’ reactions and performance with prototypes
- Iterative design
Focus on Tasks

- Users’ tasks/goals are the driving force – Different tasks require very different visualizations
- Lists of common visualization tasks can help
 - Shneiderman’s “Task by Data Type Taxonomy”
 - Amar, Eagan, and Stasko (InfoVis05)

- But user-specific tasks are still the best
Focus on Users

- Users’ characteristics and context of use need to be supported
- Users have varied needs and experience
 - E.g. radiologists vs. GPs vs. patients
Understanding users’ work

- Field Studies
 - May involve observation, interviewing
 - At user’s workplace
- Surveys
- Meetings / collaboration
Design cycle

• Design should be iterative
 – Prototype, test, prototype, test, ...
 – Test with users!

• Design may be participatory
Key point

- Visualizations must support specific users doing specific tasks
- “Showing the data” is not enough!
Evaluation
How to evaluate with users?

• Quantitative Experiments
 Clear conclusions, but limited realism

• Qualitative Methods
 – Observations
 – Contextual inquiry
 – Field studies
 More realistic, but conclusions less precise
How to evaluate without users?

- Heuristic evaluation
- Cognitive walkthrough
 - Hard – tasks ill-defined & may be accomplished many ways
 - Allendoerfer et al. (InfoVis05) address this issue
- GOMS / User Modeling?
 - Hard – designed to test repetitive behaviour
Types of Evaluation (Plaisant)

• Compare design elements
 – E.g., coordination vs. no coordination (North & Shneiderman)

• Compare systems
 – E.g., Spotfire vs. TableLens

• Usability evaluation of a system
 – E.g., Snap system (N & S)

• Case studies
 – Real users in real settings
 E.g., bioinformatics, E-commerce, security
Snap-Together Vis

Custom coordinated views
Questions

• Is this system usable?
 – Usability testing

• Is coordination important? Does it improve performance?
 – Experiment to compare coordination vs. no coordination
Usability testing vs. Experiment

Usability testing
- Aim: improve products
- Few participants
- Results inform design
- Not perfectly replicable
- Partially controlled conditions
- Results reported to developers

Quantitative Experiment
- Aim: discover knowledge
- Many participants
- Results validated statistically
- Replicable
- Strongly controlled conditions
- Scientific paper reports results to community
Usability of Snap-Together Vis

- Can people use the Snap system to construct a coordinated visualization?
- Not really a research question
- But necessary if we want to use the system to answer research questions
- How would you test this?
Critique of Snap-Together Vis Usability Testing

+ Focus on qualitative results
+ Report problems in detail
+ Suggest design changes
- Did not evaluate how much training is needed (one of their objectives)
• Results useful mainly to developers
Summary: Usability testing

- Goals focus on how well users perform tasks with the prototype
- May compare products or prototypes
- Techniques:
 - Time to complete task & number & type of errors (quantitative performance data)
 - Qualitative methods (questionnaires, observations, interviews)
 - Video/audio for record keeping
Controlled experiments

• Strives for
 – Testable hypothesis
 – Control of variables and conditions
 – Generalizable results
 – Confidence in results (statistics)
Testable hypothesis

• State a testable hypothesis
 – this is a precise problem statement

• Example:
 – (BAD) 2D is better than 3D
 – (GOOD) Searching for a graphic item among 100 randomly placed similar items will take longer with a 3D perspective display than with a 2D display.
Controlled conditions

• **Purpose:** Knowing the cause of a difference found in an experiment
 – No difference between conditions except the ideas being studied

• **Trade-off between control and generalizable results**
Confounding Factors (1)

- Group 1
 Visualization A in a room with windows
- Group 2
 Visualization B in a room without windows

What can you conclude if Group 2 performs the task faster?
Confounding Factors (2)

- Participants perform tasks with Visualization A followed by Visualization B.

What can we conclude if task time is faster with Visualization A?
Confounding Factors (3)

- Do people remember information better with 3D or 2D displays?
- Participants randomly assigned to 2D or 3D
- Instructions and experimental conditions the same for all participants

Tavanti and Lind (Infovis 2001)
What are the confounding factors?

2D Visualization

3D Visualization
What is controlled

• Who gets what condition
 – Subjects randomly assigned to groups
• When & where each condition is given
• How the condition is given
 – Consistent Instructions
 – Avoid actions that bias results (e.g., “Here is the system I developed. I think you’ll find it much better than the one you just tried.”)
• Order effects
Order Effects

Example: Search for circles among squares and triangles in Visualizations A and B

1. Randomization
 - E.g., number of distractors: 3, 15, 6, 12, 9, 6, 3, 15, 9, 12...

2. Counter-balancing
 - E.g., Half use Vis A 1st, half use Vis B first
Experimental Designs

<table>
<thead>
<tr>
<th></th>
<th>Between-subjects</th>
<th>Within-subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>No order effects?</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Participants can compare conditions?</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Number of participants</td>
<td>Many</td>
<td>Few</td>
</tr>
</tbody>
</table>
Statistical analysis

• Apply statistical methods to data analysis
 – confidence limits:
 • the confidence that your conclusion is correct
 • “p = 0.05” means:
 – a 95% probability that there is a true difference
 – a 5% probability the difference occurred by chance
Types of statistical tests

• T-tests (compare 2 conditions)
• ANOVA (compare >2 conditions)
• Correlation and regression
• Many others
Snap-Together Vis Experiment

• Are both *coordination* AND *visual overview* important in overview + detail displays?

• How would you test this?
Critique of Snap-Together Vis Experiment

+ Carefully designed to focus on factors of interest
- Limited generalizability. Would we get the same result with non-text data? Expert users? Other types of coordination? Complex displays?
- Unexciting hypothesis – we were fairly sure what the answer would be
How should evaluation change?

• Better experimental design
 – Especially more meaningful tasks
• Fewer “Compare time on two systems” experiments
• Qualitative methods
• Field studies with real users
Take home messages

• Talk to real users!

• Learn more about HCI!