User Centered Design and Evaluation

Overview
- My evaluation experience
- Why involve users at all?
- What is a user-centered approach?
- Evaluation strategies
 - Examples from “Snap-Together Visualization” paper

Empirical comparison of 2D, 3D, and 2D/3D combinations for spatial data

Development and evaluation of a Volume visualization interface

Collaborative visualization on a tabletop

Why involve users?

“Damn these hoses! I hit the wrong switch again! Who designs these instrument panels, rookies?”
Why involve users?

- Understand the users and their problems
 - Visualization users are experts
 - We do not understand their tasks and information needs
 - Intuition is not good enough
- Expectation management & Ownership
 - Ensure users have realistic expectations
 - Make the users active stakeholders

What is a user-centered approach?

- Early focus on users and tasks
- Empirical measurement: users’ reactions and performance with prototypes
- Iterative design

Focus on Users

- Users’ characteristics and context of use need to be supported
- Users have varied needs and experience
 - E.g. radiologists vs. GPs vs. patients

Understanding users’ work

- Field Studies
 - May involve observation, interviewing
 - At user’s workplace
- Surveys
- Meetings / collaboration

Design cycle

- Design should be iterative
 - Prototype, test, prototype, test, ...
 - Test with users!
- Design may be participatory
Key point

- Visualizations must support specific users doing specific tasks
- “Showing the data” is not enough!

Evaluation

How to evaluate with users?

- Quantitative Experiments
 Clear conclusions, but limited realism

- Qualitative Methods
 - Observations
 - Contextual inquiry
 - Field studies
 More realistic, but conclusions less precise

How to evaluate without users?

- Heuristic evaluation
- Cognitive walkthrough
 – Hard – tasks ill-defined & may be accomplished many ways
 - Allendoerfer et al. (InfoVis05) address this issue
- GOMS / User Modeling?
 – Hard – designed to test repetitive behaviour

Types of Evaluation (Plaisant)

- Compare design elements
 - E.g., coordination vs. no coordination (North & Shneiderman)
- Compare systems
 - E.g., Spotfire vs. TableLens
- Usability evaluation of a system
 - E.g., Snap system (N & S)
- Case studies
 - Real users in real settings
 E.g., bioinformatics, E-commerce, security

Snap-Together Vis

Custom coordinated views
Questions
- Is this system usable?
 - Usability testing

- Is coordination important? Does it improve performance?
 - Experiment to compare coordination vs. no coordination

Usability testing vs. Experiment

Usability testing
- Aim: improve products
- Few participants
- Results inform design
- Not perfectly replicable
- Partially controlled conditions
- Results reported to developers

Quantitative Experiment
- Aim: discover knowledge
- Many participants
- Results validated statistically
- Replicable
- Strongly controlled conditions
- Scientific paper reports results to community

Usability of Snap-Together Vis
- Can people use the Snap system to construct a coordinated visualization?
- Not really a research question
- But necessary if we want to use the system to answer research questions
- How would you test this?

Critique of Snap-Together Vis

Usability Testing
+ Focus on qualitative results
+ Report problems in detail
+ Suggest design changes
- Did not evaluate how much training is needed (one of their objectives)
- Results useful mainly to developers

Summary: Usability testing
- Goals focus on how well users perform tasks with the prototype
- May compare products or prototypes
- Techniques:
 - Time to complete task & number & type of errors (quantitative performance data)
 - Qualitative methods (questionnaires, observations, interviews)
 - Video/audio for record keeping

Controlled experiments
- Strives for
 - Testable hypothesis
 - Control of variables and conditions
 - Generalizable results
 - Confidence in results (statistics)
Testable hypothesis

- State a testable hypothesis
 - this is a precise problem statement

- Example:
 - (BAD) 2D is better than 3D
 - (GOOD) Searching for a graphic item among 100 randomly placed similar items will take longer with a 3D perspective display than with a 2D display.

Controlled conditions

- Purpose: Knowing the cause of a difference found in an experiment
 - No difference between conditions except the ideas being studied

- Trade-off between control and generalizable results

Confounding Factors (1)

- Group 1
 Visualization A in a room with windows

- Group 2
 Visualization B in a room without windows

What can you conclude if Group 2 performs the task faster?

Confounding Factors (2)

- Participants perform tasks with Visualization A followed by Visualization B.

What can we conclude if task time is faster with Visualization A?

Confounding Factors (3)

- Do people remember information better with 3D or 2D displays?
- Participants randomly assigned to 2D or 3D
- Instructions and experimental conditions the same for all participants

Tavanti and Lind (Infovis 2001)
What is controlled

- Who gets what condition
 - Subjects randomly assigned to groups
- When & where each condition is given
- How the condition is given
 - Consistent Instructions
 - Avoid actions that bias results (e.g., “Here is the system I developed. I think you'll find it much better than the one you just tried.”)
- Order effects

Order Effects

Example: Search for circles among squares and triangles in Visualizations A and B

1. Randomization
 - E.g., number of distractors: 3, 15, 6, 12, 9, 6, 3, 15, 9, 12...
2. Counter-balancing
 - E.g., Half use Vis A 1st, half use Vis B first

Experimental Designs

<table>
<thead>
<tr>
<th></th>
<th>Between-subjects</th>
<th>Within-subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>No order effects?</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Participants can compare conditions?</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Number of participants</td>
<td>Many</td>
<td>Few</td>
</tr>
</tbody>
</table>

Statistical analysis

- Apply statistical methods to data analysis
 - confidence limits:
 - the confidence that your conclusion is correct
 - “p = 0.05” means:
 - a 95% probability that there is a true difference
 - a 5% probability the difference occurred by chance

Types of statistical tests

- T-tests (compare 2 conditions)
- ANOVA (compare >2 conditions)
- Correlation and regression
- Many others

Snap-Together Vis Experiment

- Are both coordination AND visual overview important in overview + detail displays?

 - How would you test this?
Critique of Snap-Together Vis Experiment

+ Carefully designed to focus on factors of interest
- Limited generalizability. Would we get the same result with non-text data? Expert users? Other types of coordination? Complex displays?
- Unexciting hypothesis – we were fairly sure what the answer would be

How should evaluation change?

• Better experimental design
 – Especially more meaningful tasks
• Fewer “Compare time on two systems” experiments
• Qualitative methods
• Field studies with real users

Take home messages

• Talk to real users!
• Learn more about HCI!