Two Technique Papers on High Dimensionality

Allan Rempel
December 5, 2005

Papers

- well written, clear, appropriately detailed
- High-dim and MDS can be complicated

Dimensionality reduction

- Mapping high-dimensional data to 2D space
- Could be done many different ways
- Different techniques satisfy different goals
- Familiar example - projection of 3D to 2D preserves geometric relationships
- Abstract data may not need that

Multidimensional scaling (MDS)

- Display multivariate abstract point data in 2D
 - Data from bioinformatics, financial sector, etc.
 - No inherent mapping in 2D space
 - p-dim embedding of q-dim space (p < q) where inter-object relationships are approximated in low-dimensional space
- Proximity in high-D -> proximity in 2D
 - High-dim distance between points (similarity) determines relative (x,y) position
 - Absolute (x,y) positions are not meaningful
- Clusters show closely associated points

Multidimensional scaling (MDS)

- Eigenvector analysis of \(N \times N \) matrix – \(O(N^2) \)
 - Need to recompute if data changes slightly
 - Iterative \(O(N^2) \) algorithm – Chalmers,1996
- This paper – \(O(N\sqrt{N}) \)
- Next paper – \(O(N \log N) \)

Multidimensional scaling (MDS)

- Proximity data
 - In social sciences, geology, archaeology, etc.
 - E.g. library catalogue query – find similar points
 - Multi-dimensional scatterplot not possible
 - Want to see clusters, curves, etc.
 - Features that stand out from the noise
- Distance function
 - Typically use Euclidean distance – intuitive
Spring models

- Used instead of statistical techniques (PCA)
 - Better convergence to optimal solution
 - Iterative – steerable – Munzner et al, 2004
- Good aesthetic results – symmetry, edge lengths
- Basic algorithm – $O(N^3)$
 - Start: place points randomly in 2D space
 - Springs reflect diff btwn high-D and 2D distance
 - #iterations required is generally $O(N)$

Chalmers’ 1996 algorithm

- Approximate solution works well
- Caching, stochastic sampling – $O(N^2)$
 - Perform each iteration in $O(N)$ instead of $O(N^2)$
 - Keep constant-size set of neighbours
 - Constants as low as 5 worked well
- Still only worked on datasets up to few 1000s

Hybrid methods of clustering and layout

- Diff clustering algorithms have diff strengths
 - Kohonen’s self-organising feature maps (SOM)
 - K-means iterative centroid-based divisive alg.
- Hybrid methods have produced benefits
- Neural networks, machine learning literature

New hybrid MDS approach

- Start: run spring model on subset of size \sqrt{N}
 - Completes in $O(N)$ ($O(\sqrt{N} \times \sqrt{N})$)
- For each remaining point:
 - Place close to closest ‘anchor’
 - Adjust by adding spring forces to other anchors
- Overall complexity $O(N \sqrt{N})$

Experimental results

- 3-D data sets: 5000 – 50,000 points
- 13-D data sets: 2000 – 24,000 points
- Took less than 1/3 the time of the $O(N^3)$
- Achieved lower stress when done
- Also compared against original $O(N^3)$ model
 - 9 seconds vs. 577; and 24 vs. 3642
 - Achieved much lower stress (0.06 vs. 0.2)
Future work

- Hashing
- Pivots – Morrison, Chalmers, 2003
 - Achieved $O(N\sqrt[3]{N})$
- Dynamically resizing anchor set
- Proximity grid
 - Do MDS, then transform continuous layout into discrete topology

Improving parent-finding strategy

- Select constant-size subset $P \subset S$
- For each p in P create sorted list L_p
- For each remaining point u, binary search L_p for point u_p as distant from p as u is
 - Implies that u and u_p are very close
- Place u according to location of u_p

Comparison

- Chalmers et al is better for $N < 5500$
- Main diff is in parent-finding, represented by Fig. 3

Quality of output

- MDS theory uses stress to objectively determine quality of placement of points
- Subjective determinations can be made too
 - 2D small world network example (500 – 80,000 nodes)
Recursively defining the initial kernel set of points can yield much better real-time performance

Conclusions and future work

- Series of results yielding progressively better time complexities for MDS
- 2D mappings provide good representations
- Further examination of multiscale approach
- User-steerable MDS could be fruitful