Two papers on

Color

Presented by Anirban Sinha (Ani)

Focus Area

- Importance of luminance & luminance contrast in color maps for visualizing human recognizable elements in photos.
- Design of a technique to use man's complex power of face recognition in constructing a color map with uniform predetermined luminance variation.

Paper # 1

The "Which Blair Project": A Quick Visual Method for Evaluating Perceptual Color Maps

Bernice E. Rogowitz Alan D. Kalvin

Visual Analysis Group, IBM T.J. Watson Research Center, Hawthorne, NY

Target of this paper

- How important is luminance in showing the "naturalness" of an image.
- How & in which degree are we sensitive to luminance variations.
- Propose a thumb rule for designing an effective color map for depicting natural images more effectively, specially in internet environment where color rendering properties on the client side is unknown.

Methodology used

Taken 8 colormaps.

- Map these color maps (& their subsections) to the intensity values of digital photo, that of "Tony Blair".
- Judge the naturalness of the images by putting them across 17 observers & allow them to grade the photos in a scale of {-2, -1, 0, 1,2} from very bad to very good.
- Plotting the scores in bar charts & analyzing.

Color Maps used

Monotonically Increasing Luminance

- LAB grey Scale (L*, a*, b*)
- Heated Body (HSV)
- HSV grey Scale
- Boost HSV decreasing Saturation
- Constant Luminance
 - LAB Isoluminant Rainbow
 - LAB Isoluminant Saturation
- Decreasing Luminance
 - HSV increasing Saturation
- Irregular Luminance
 - Rainbow (RGB)

Color Map Family

- Normalized the range of each of the colormaps to a scale of [0-99] & subdivided each full range into 7 overlapping quarter sub segments
 [0-24], [2-36], [25-49], [37-61], [50-74], [62-86], [75-99].
- Total 64 scales (8 full range & 56 quarter range).
- 34 scales has monotonic increasing luminance.
- 16 scales with no luminance variations.
- 10 scales with monotonic decreasing luminance.
- 4 scales with irregular variance.

Results

- Consistently positive judgments for those scales having monotonically increasing luminance value.
- Moderately low judgments for those scales with monotonically decreasing luminance.
- Very poor performance for scales with uniform luminance.
- Luminance contrast (rate of change of luminance across hue) has a greater impact than the hue range.
- When luminance contrast exceeds 20%, 70% of the score ratings are positive.

Conclusion

- Use a colormap that has a monotonically increasing luminance.
- Use strong luminance contrast, preferably exceeding 20% in your color map.

Critique

- It would be interesting to see the analysis on other different kinds of images.
- None of the graphs or the test images were available in color print. It was difficult to see the conclusion from the graphs otherwise.
- I did not quite understand figure 8 that tries to establish strong correlation between luminance contrast & better perception of images. The representation used is poor, more so with non-availability of color.

Comparing Luminance Contrast

Figure 8: The relationship between L* contrast and percentage of favorable ratings. This relationship is logarithmic for color scales having monotonically increasing luminance.

Critique Continued ...

- I think a better analysis could have been done by taking two separate sets of color maps,
 - One with strong monotonic luminance increase with good contrast (of varying degree).
 - Other with constant luminance.
- Plot separate graphs for the first set & another taking the best case of the first set with a sample case from the second set & compare.

Face-based Luminance Matching for Perceptual Colormap Generation

Gordon Kindlmann – School of Computing, Univ. of Utah Erik Reinhard – School of EE + CS, University of Central Florida Sarah Creem – Department of Psychology, Univ. of Utah. Importance of Luminance & The Target of The Paper

- We have seen luminance is really critical in helping us to identify image structure, terrain, surface etc.
- Control of luminance is difficult because display device is uncalibrated, varied lighting conditions of the room, human physical variations from person to person etc.
- Propose an elegant solution for controlling luminance across a color map.

The Proposed Approach

- A fixed reference color (shade of gray) with a specific luminance value is compared to another color with varying luminance using face recognition.
- Can be used to construct a color map with constant luminance values or uniformly varying luminance.

Methodology

- Use two copies of a black & white image of a human face placed side by side with one in reversed black & white regions.
- Replace the black region with a shade of gray with known luminance & the white with a specific hue (color) with varying luminance.
- If there remains a large variation of luminance between gray & color regions, one of the images appear positive, another appear negative.
- Vary the luminance of the color (L in HLS space) until neither face appears positive or negative.
- Record the luminance value of the specific color causing transition.

Test image used

Compare face-based luminance

measurement approach to MDB approach

- MDB method is free from Helmholtx-Kohlrausch effect
 - Saturated colors tend to "glow" with a brightness out of proportion to their actual luminance.
 - Read about it in details in this paper:
 - G Wyszecki and W S Stiles. Color Science: Concepts and Methods, Quantitative Data and Formulae. John Wiley and Sons, New York, 2nd edition, 1982.
 - Two images are placed side by side & their luminance adjusted until the border is just minimally visible.

Test Pattern Used for Comparison ...

Results

Performance of face based method almost the same as the MDB approach.

Colormap Generation with Uniform Luminance

- But we took only 6 hue samples, how do we have a uniform continuous colormap??
- Solution: Interpolate using the formula:

$$c_f = \begin{pmatrix} ((1-f)r_0^{\gamma} + fr_1^{\gamma})^{1/\gamma} \\ ((1-f)g_0^{\gamma} + fg_1^{\gamma})^{1/\gamma} \\ ((1-f)b_0^{\gamma} + fb_1^{\gamma})^{1/\gamma} \end{pmatrix}$$

■ Where $c_0 = (r_0, g_0, b_0) \& c_1 = (r_1, g_1, b_1) \& C_f$ is a color in between $C_0 \& C_1 \& f$ is a parameter $\in [0, 1]$.

How to estimate Monitor Gamma??

- Replace the black region of the image by a grayscale color with varying luminance & the white portion by alternate stripes of black & white which has a uniform intensity half of that of white independent of the gamma.
- Adjust the intensity level of the gray region to that of the shaded region similar to the previous experiment.

How to have varying luminance with hue???

- Well, Simple really!
- Previously, the luminance level of gray region was constant for every hue value.
- Now, just vary the gray scale luminance in the experiment for every different hue & then interpolate.

Critique

- Well, what's the ideal sample size for this experiment to represent a true illumination measurement for the mass? Is 12 participants really representative of the human population?? Doubtful.
- How to exactly pinpoint the transition zone?? Different people will have different opinions about this. Any specific guidelines??
- It would be really interesting to see whether luminance varies with aging.
- How do we know that the monitor used was a "standard" one?? No monitor specs? Will the calibration obtained be different of we used a separate monitor?
- Why flip the test images for MDB analysis? It wasn't very clear reading the paper though.

Questions & Discussion ...

