Motivation

- Computer networks can be represented as graphs
- Often, there is geographic data associated with the network (physical locations)
- We can put these graphs on a map!
- But, our ability to extract data from large datasets has not kept pace with our ability to create and gather the data

Motivation

- The telecom dataset is huge!
- Node-link diagrams do not scale
- They become overwhelmed, cluttered, and confused
 - Too many nodes
 - Too many edges
 - Edge crossings
 - Bleh!

Motivation

- We could use graph layout algorithms
- But then we lose all of the geographic encoding
- … that stuff was important for easy understanding
- The paper proposes five solutions which preserve geographic layout by using 3D

Why 3D?

- If we draw arcs instead of lines for edges, we can use pre-attentive depth perception and continuity detection to eliminate the perception of line crossings in the graph
Global Networks
- Position nodes geographically on a globe
- Draw edges as arcs between them

Global Networks
- Retains spatial information
- “Eliminates crossings” … doubtful
- Nodes represented by glyph which can use all of that glyph encoding stuff
- Arcs encoded by colour for extra info
- Illuminated by a fixed light which can indicate passage of time… not convinced
 - What happens at “night”?
- User restricted to rotations, so can’t get lost

Global Networks
- We can’t see around the globe, so we need a translucency control to see through it
 - But it’s still confusing if there is edge occlusion
- That edge clutter is still there
 - We can filter, losing context
 - Or we can select how to re-rout an edge
 - Perhaps underground?
- … it gave great geographic context, but still had all of the 2D layout problems… but worse… I don’t think it helped much

Arc Maps
- Idea: embed a 2D map in 3D space, run edges as arcs in 3D

Arc Map
- Not restricted to a global view, can be of a small region
 - Leads to “drill-down” = details on demand
- Arcs in 3D reduce edge clutter
 - Really get continuation
 - Can rotate and zoom to get depth perception
- Arc height can give another encoding of info
- Can make arcs translucent to reduce occlusion

Spoke View
- Colour code spokes for edge data
- Colour and size code nodes
- Nodes can be placed in geographic position if we put the root at the centre of a polar projection
 - This would make it a filtered 2D global view…
- But this won’t scale
- All lines become same length wasting screen space
- Statement: we can rebuild it using 3D!
Helix View
- What if the spoke view was a top down view of a helix structure?
- We could rotate it to see everything

Pincushion View
- Arrange nodes on surface of a sphere
- Lines maintain the same spatial length (radius), but different screen length
- But nodes are evenly spread out
- Still need to rotate it to see everything

Discussion

Visualizing Large-Scale Telecom Nets and Services
Koutsofios et al.
AT&T Labs
1999

Motivation
- Still have lots of data ... lots of small data
- Old databases don't handle lots of real-time, small, inter-related data well
- Understanding full scale of data is needed to manage effectively
- Goals:
 - Go from data to business decisions quickly
 - Raise level of abstraction... lines, not devices
 - Real-time responsiveness
- Main contribution: stream based, not query/response

Visualization stuff
- Linked 2D and 3D views (detail + overview)
- Automated context-preserving pan + zoom
- Different overlays for different data
- Semantic zoom (value per state vs. county)
- Animation over time
- Can browse and drill-down
- ... seems pretty okay
Visualization Stuff

[Image of a visualization chart]

Architecture

- 3 modules
 - Data collector (and storage)
 - Aggregator (data processing and pre-proc.)
 - Visualization (not the important part here)
- Communication over self-describing data-independent formats
 - Sounds like a bad idea… (was 1 year after XML)
 - North-American telecom is a dinosaur
- Uses advanced systems stuff for fast communication

Data Collector

- Data is converted to the native format
- Some data has to be aggregated and joined over diverse and content-dependent sources
 - Mostly because telecom data is a mess
- Data that is in the right format just needs a schema attached
 - Doesn’t sound convincing

Data Processing

- Based on pipeline model
- Concurrent processes are piped together
- Pipes can:
 - “Tee”
 - Filter
 - Count
 - Split
- Pipelines are parallelizable, modular, and simple… fast efficient, and maintainable
- Pipeline modules are compiled and dynamically linked

Data Visualization

- Interaction pattern:
 - View data
 - Focus on something interesting
 - Query for more details
 - Re-aggregate and view results
- Does this by maintaining a link between raw data, aggregate data, and visualized representation

Architecture for Performance

- Does systems stuff to make things fast
 - Pipelines
 - Random access files with version stamps
 - Direct I/O
 - Memory mapping
 - Dynamic linking of runtime generated code
Discussion

Sources

- Images taken from original papers or found through google image search
- 3D Geographic Network Displays Kenneth C. Cox, Stephen G. Eick, Taosong He. ACM SIGMOD Record Volume 25, Number 4, pp 50-54, 1996