
An Interactive Small World Graph Visualization

Stephen F. Ingram∗

University of British Columbia

Figure 1: Generic Screenshot of graph exhibiting small world structure using the small world prefuse components.

ABSTRACT

Small world graphs are a common class of graphs whose topology
exhibits structure characteristic of both order and randomness. This
report summarizes the implementation of a 3D visualization tech-
nique designed to exploit the topological features of small world
graphs using the prefuse toolkit. We successfully transition the al-
gorithm from 3 to 2 dimensions. We then explain and resolve sev-
eral key ambiguities in the algorithm. We compare the performance
on a variety of small world graphs. Finally, we analyze the utility
of the visualization through several scenarios of use.

Keywords: Small World Graphs, Graph Visualization, Graph
Drawing, Prefuse Toolkit, Clustering

1 INTRODUCTION AND PREVIOUS WORK

Imagine the task of classifying all node and link graphs accord-
ing to their topology on the spectrum between complete regularity
and complete randomness. How would one definitively classify an
arbitrary graph? One strategy is to note the characteristics of ex-
treme graphs. Regular graphs, such as grids, exhibit a cliquishness.
That is, a given node’s neighbors share many of the same neigh-
bors. This generally has the consequence of long path lengths be-
tween arbitrary nodes, where you must travel through a long chain
of cliques to find the shortest path between these nodes. On the

∗e-mail: sfingram@cs.ubc.ca

other hand, completely random graphs exhibit the opposite behav-
ior. Their neighbors do not exhibit the same cliquishness, forming
random relationships across the network. This has the consequence
of making the average path length between arbitrary nodes very
small. These two respective measures are technically called Clus-
tering Coefficient and the Characteristic Path Length and we can
use these to form a two-dimensional spectrum of graph topologies.

In the part of the spectrum where path length is small and clus-
tering his high, in other words, where graphs exhibit characteris-
tics of both random and regular graphs, is the class of graphs with
“small world” structure [11]. These small world graphs have re-
cently emerged as interesting because they model systems, such as
neural networks or social networks, that are hard to analyze using
conventional means. This resistance to conventional analysis make
small world graphs a good target for visualization. It is well known
that the human visual system can discern patterns that are exceed-
ingly difficult for machines to perceive.

However, like conventional analysis, graph layout has suffered
from a deficit of techniques to exploit the unique topology of these
graphs. Standard physical layout seeks to minimize the variance in
edge lengths, leading to a uniform graph layout. But small world
graphs should contain a variety of edge lengths, with shorter lengths
for edges in tight clusters and longer lengths for random edges be-
tween these clusters. Recently Noack [9, 10] has devised a physical
algorithm to calculate such an embedding. Dubbed LinLog, the
layout’s edge lengths are proportional to their coupling.

Armed with such a layout, van Ham and van Wijk [2] introduced
a series of interactive techniques specifically designed for small

world graph visualization. They use the geometry computed by
the Noack layout to define a dendrogram of nodes where the nodes
in the dendrogram represent graph nodes, clusters of graph nodes,
or clusters of these clusters. Next, they define a smooth method
of interpolating between nodes in a given subtree called the degree
of abstraction. Using this semantic/geometric interpolation, they
create a visual analogue of the cluster dendrogram and use fisheye
focus-plus-context techniques to allow a user to explore the cluster
hierarchy. By using a fisheye lens to smoothly reveal the subclus-
ters in the graph a user can supposedly understand more about the
latent communities in the small world graph.

This report discusses the implementation and the results of the
above techniques in a freely available graph visualization toolkit
called prefuse [3]. Because this toolkit factors so integrally into the
report, we give a brief description of it in the next section.

2 PREFUSE

Prefuse is a software framework for information visualization in
Java. As such, it is designed to dramatically simplify the creation of
visualizations. A potential visualization builder need only to com-
pose their product into a pipelined series of prefuse components.
In order to make this simple, prefuse partitions the workflow of a
visualization into the following abstract regions:

• Data–The nodes and edges of the graph itself and any sup-
porting data.

• Visual Form–The data structures that define only those items
which are scheduled to be drawn on the screen.

• View–This is the frame buffer and any user controls.

Likewise, prefuse partitions its actual software components into
the following categories

• Entities–These objects make up the Data.

• Filters–These map Entities to VisualItems.

• VisualItem–These are the objects that compose our Visual
Form.

• Layouts–These determing the positions/sizes of VisualItems
on the screen.

• Renderers–These map VisualItems to the Display.

• Displays–This makes up the View.

Prefuse makes some assumptions about what kind of visualiza-
tions can be made. First, it assumes that the underlying data is a
graph. This does not conflict with the goals of the project. Second,
prefuse is built with Java2D and therefore assumes that the desired
visual output is two dimensional. While [2] uses three dimensional
data to achieve its visual goals, we argue below that we can achieve
the same or similar visual goals in two dimensions. Therefore we
believe prefuse makes an ideal candidate for our visualization.

In the following section we describe the design of our software
into prefuse-style components.

3 DESIGN

The following is a table listing the components created in our
implementation and the categories to which they belong:

Category New Component Name
Entity Cluster
Filter LinLogAction, AverageLinkCluster

Layout DOALayout
VisualItem VoroNode
Renderer VoroNodeRenderer, TubeRenderer

Here we define a new default Entity, Cluster, for our data to
exhibit the hierarchical properties of the technique. Next we
define the Noack layout, or LinLog, and the dendrogram clustering
algorithm as Filters instead of Layouts because we are only
determining the positions of Clusters, which are not visible.
Determining what is actually visible depends on the local Degree
of Abstraction for a given region of the screen. Thus we create
a DOALayout to map Clusters to what we term VoroNodes (the
choice for this name will be explained in section 4.2.1). Finally we
devise a pair of Renderers to handle drawing our nodes and edges
in a way compatible with [2].

4 IMPLEMENTATION

This section details relevant issues, some unexpected, encountered
in the development of the above prefuse components.

4.1 PolyLog Layout

Van Ham [2] mentions that unoptimized force model simulators ex-
hibit O(N3) complexity. Using such a force model on graphs of
hundreds or thousands of nodes therefore seems prohibitive, but is
justified as being a “preprocessing step.” While this is true that
it will not effect the interactivity of the visualization, it hurts the
ability for a single user to run a series of visualizations. It also
prohibits the existance of a graph node creation/deletion tool for
the visualization because the simulation would need to be run after
each graph edit.

Luckily, Noack has provided a Java-based implementation of
the LinLog model with a Barnes-Hut optimization that brings the
complexity down to O(N2Log(N)). Our task was thus significantly
scaled down to merely building a prefuse Filter wrapper class that
translates between underlying graph data structures.

4.2 Rendering

This sub-section details some of the significant problems we en-
countered in translating the visual model of our target to Java2D.
We admit to relying on the use of clever, but inelegant hacks to
achieve comparable visual results.

4.2.1 Nodes

One of the major techniques in [2] is the use of visual abstraction
to convey clusters and subclusters in the graph. One such instance
of this is in the rendering of nodes as spheres. For example, if the
degree of abstraction for a cluster is high, it appears onscreen as a
single sphere. As the degree of abstraction decreases for this clus-
ter, it is decomposed into subclusters. Because this decomposition
is interpolated smoothly, the geometrically clustered spheres still
appear similar to the parent cluster, however the intersections of the
spheres create a “shaded Voronoi diagram” revealing the substruc-
ture of the sphere.

It was our original intention to explicitly compute the Voronoi
diagram of the intersecting subspheres. This is what lead to our
sublclass of prefuse VisualItem to be called VoroNode. We first
compute the Delaunay Triangulation of all the clusters and take the
dual of this to yield the Voronoi regions of each cluster. Then, using
Constructive Area Geometry, we subtract from a node A’s circular
shape the shapes of its neighbors B minus A’s Voronoi cell. We

Figure 2: Examples of porting node drawing to 2D. From left to right we have no modification, computing Voronoi regions (with bugs), and
using a simple hack.

then render the new shape for A using traditional 2D draw routines.
Thus we capture all the information in the 3D diagram.

Unfortunately there are two things wrong with this approach.
First, the computation of the triangulation is slow unless significant
optimization is used such as in [1]. Second, and more importantly,
this technique breaks the rendering pipeline of prefuse. Prefuse
follows a policy of zero object creation in the rendering phase of
the pipeline. Unfortunately Java2D requires objects of type Shape
be passed to its draw routines. Thus, to draw our VoroNodes, we
must create new shapes for every frame of animation. But this will
eventually provoke the ire of the Java Virtual Machine which then
forces the garbage collector to reclaim these un-used shapes and
temporarily destroys our interactivity. This left two options:

1. Devise a pre-allocated Shape back-end to our renderer

2. Try something simpler

Opting for number 2, we used the following, simpler strategy.
Reasoning that graphics cards are quite fast enough and our biggest
enemy is the garbage collector, we simply fake 3D nodes. That is,
each of our nodes is just a set of concentric circles whose color fol-
lows a gradient from black to white. The key is to draw a single
layer of all the nodes before drawing the next layer. This entailed
augmenting prefuse with a new class of Renderer we call a Mul-
tipassRenderer and its corresponding MultipassDisplay to replace
the standard prefuse Display. These two classes extend the graphi-
cal possibilities of prefuse for applications outside of this visualiza-
tion.

4.2.2 Edges

The original paper employs 3D edges to indicate edge orientation
more clearly in the case of edge occlusion. Likewise, shorter edges
are given priority over longer edges by keeping the volume of edges
constant, so short edges are fatter and longer, less significant edges
are barely perceptible. In the transition to 2D, edges suffer from a
similar problem as nodes, but resolve to a less graceful conclusion.

Our first attempt to create 2D edges with shading was to simply
use rectangles filed with a gradient paint. This strategy ignores the
zero object creation policy and suffers from severely degraded per-
formance. Unfortunately we cannot simply resolve this problem as
we did with nodes. While creating a series of concentric polygons
may work visually, unlike circles, polygons are anisotropic. This
means we need to create a new polygon to align with each edge
axis. There unfortunately may be as many axis angles as there are
edges, so we cannot pre-compute our edge polygons without se-
rious memory commitment. We thus must resort to a much more
complex edge rendering system to maintain the same effect.

Figure 3: The first attempt at mimicking 3D edges was unsuccessful.

Rather than take this drastic measure, we make a compromise.
We forgo the orientation-revealing advantages gained by shading
and simply draw the edges as lines using the established prefuse
edge renderer with a single modification; the transparency of a
given edge is proportional to its length. Thus the shortest edge is
the most opaque and the longest edge is the most transparent. This
compromise is in the same spirit as the “constant-volume” tubes in
the original paper, but much simpler and quicker to render.

4.3 Clustering

Clustering decides which two nodes become merged into a single
cluster. This is vital to the visualization for at least two reasons.
First, it is by the smooth, animated composition/decomposition of
clusters that community structure is conveyed to the user. If the
clusters decompose in an unintuitive way, we lose one of the major
objectives of the visualization. Thus clustering should favor neigh-
bors that are geometrically closer. Clustering is also important in
that it allows us to only process the set of visible nodes. Depend-
ing on the constant degree of abstraction (explained in section 4.4)
we will only process O(Log(N)) nodes, keeping the visualization
running at an interactive rate.

We don’t simply cluster the two nearest neighboring clusters.
This technique, called Minimum Link, causes what Van Ham calls
“long chains”. Long chains are undesirable because they substitute
the exponential decomposition of clusters for linear decomposition

of clusters. In a nutshell, this means that some neighbors in a com-
munity will emerge on the graph far after some of their neighbors
in the same community. To best achieve an exponential decom-
position, we use Average Link clustering which entails clustering
two neighboring clusters whose average shared edge length is the
smallest. This technique is O(N2) in the worst case.

We further consider an alternate clustering algorithm by New-
man [8] designed specifically for detecting communities in small-
world graphs. This algorithm, a greedy approximation of the more
robust [7], seeks to maximize a modularity measure of the graph.
This algorithm only regards the topology of the graph, but can be
modified for weighted graphs. In this algorithm, a large edge weight
is considered good, therefore we weigh the edges from our LinLog
layout inversely proportional to their length before feeding them to
this algorithm.

We implement both of these algorithms using an efficient sparse
matrix formulation. In practice we use the sparse matrix facilities
provided by Colt, a set of Open Source Libraries for High Perfor-
mance Scientific and Technical Computing in Java.

4.3.1 Alternate Layout

Since the Newman clustering algorithm relies solely on the topol-
ogy of the graph and not its geometry, we briefly consider the idea
of using this clustering and deriving a O(Log(N)) layout solely
from the resulting dendrogram. This layout recursively and pro-
portionally subdivides space until we are at a leaf node. The den-
drogram layout is summarized by the following pseudocode

Position dLayout(Node, Rect) {
if |child.children| > 0

foreach child in Node.children
childrect = Rect / |child.children| // unique
pt += dLayout(child, Rect / |child.children|)

end
return pt / |child.children| // average of children

else
return random point in Rect

end
}

4.4 Layout

The definition of degree of abstraction is simple, but we have found
using this measure to determine the position of points more com-
plex and subtle than van Ham betrays in [2].

The measure of the degree of abstraction or DOA is simply how
high up the tree one goes when considering which nodes to draw. A
DOA of 1 indicates that we are at the root of the tree and a DOA of
0 indicates we are at the leaves of the tree. Because we cluster using
distances and distance increases monotonically as we go further up
the tree, van Ham describes an interpolation parameter λ based on
a varying DOA and the proportional distances between parent and
child. That is, he describes a method to smoothly interpolating the
positions and sizes of nodes based on some intermediary DOA ∈
[0,1].

If DOA is constant, then we don’t experience anything interest-
ing. Our visualization thus depends on varying the DOA over the
graph interactively. This is accomplished with a 2 part, mouse-
directed lens. For the initial part of the lens of distance r to the
mouse cursor where rDOA > r > r0, we set the DOA as a linear
function of r or

DOA = DOAconstant
r− r0

rDOA− r0

If r > rDOA, then we set DOA = DOAconstant . If r < r0 then
DOA = 0. Now that we know our DOA for a given position on

Figure 4: An illustration of the first subtlety of using degree of ab-
straction in practice.

Figure 5: An illustration of a situation where the exact position to
interpolate is ambiguous when using the degree of abstraction in
practice.

the screen, computing the position of a node should be straightfor-
ward. Unfortunately there are three subtleties that complicate this
process.

The first subtlety comes from computing the position for a node.
As was previously mentioned, we want to ideally consider only
O(Log(N)) nodes in our layout algorithm to maintain interactiv-
ity. Therefore it seems like we only want to consider those clusters
whose DOA is greater than the DOA at their position and cease
recursion if this isn’t true. However, following this policy will
yield an incorrect layout. This is because a parent node may be
far enough away from its children that it will have a DOA at its po-
sition that is less than the DOA of its children who are under the
lens. If we stop processing nodes at the parent node, we will never
learn that its children are under the lens.

We resolve this problem by computing the bounding box for a
node. The bounding box of a given cluster is defined by the extreme
coordinates of its leaf nodes. We then can make intelligent process-
ing decisions based on whether the DOA varies over the contents of
a node’s bounding box. Note that we could achieve even better per-
formance by using the convex hull of leaf nodes instead of a box,
but neglected to implement this due to time constraints.

The second subtlety comes from smoothly interpolating a posi-
tion. Consider an example where a parent and one of its children
are farther than the diameter of the lens apart from each other. Now
imagine that the lens passes over the region along which the child’s
position is interpolated from its parent but never intersects either
the parent or its child’s coordinates. It is unclear from [2] what to
do in this case because the path of interpolation intersects the DOA
lens twice. We suspect using a large enough lens eliminates this
problem, but we have encountered it in practice several times.

We resolve this problem by hacking the DOA function a little
bit. Instead of computing the DOA as a function of the distance
between the focus of the lens to the coordinates of a node. We
consider the DOA instead as a function of the distance between the
focus of the lens and the parent’s bounding box. In practice this
yields good enough interpolation while resolving the complexities

of interpolation as simply as possible.
The third subtlety comes from using the clustering distance mea-

sures to determine our interpolation parameter λ . Sometimes there
is a discrepancy between geometric cluster distance, which is a
function of the averages of the leaf node positions, and average
link cluster distance which is a function of the averages of the
edge lengths between two clusters. If this discrepancy is large,
which happens regularly at high degrees of abstraction, then lambda
changes very quickly and the interpolation is not smooth. We left
this problem unresolved, but can imagine a technique to correlate
these two distances.

5 RESULTS

This section details the results of our implementations. We first
consider the performance issues of the software by looking at run-
times and responsiveness. Next we try to gauge the overall usability
of the software by walking through some scenarios of use.

5.1 Performance

5.1.1 Runtime and Response

We have analyzed the performance of our system on four small
world graphs of differing sizes. The nodes of the first graph repre-
sent airports in the United States and an edge is constructed between
nodes only if there is a direct flight between them. This graph con-
tains 332 nodes and 2126 edges. Our second graph is taken from [2]
and contains 500 nodes and 2486 edges. Our third and fourth graphs
were culled from the Internet Movie Database. In these two graphs
each node is an actor and an edge is constructed between two actors
if they have appeared in 10 movies together. The smaller of these
has 419 nodes and 5651 edges, while the larger has 3648 nodes
and 24987 edges. This last graph will hereafter be called the huge
graph. All of our experiments are performed on a machine running
Microsoft Windows XP with 1 gigabyte of RAM and a 2.27 GHz
Pentium 4.

The following table contains the average runtime in milliseconds
of the LinLog layout on our 4 different graphs.

Graph Run Time (ms)
Airport 10141
Artist 13140

IMDB (small) 11563
IMDB (huge) 206485

This table contains the average runtime in milliseconds of the
Average Link clustering algorithm on the graphs.

Graph Run Time (ms)
Airport 281
Artist 360

IMDB (small) 484
IMDB (huge) 31797

Note the quadratic leap in the runtimes of our linlog and cluster-
ing algorithm even when our edges have increased by only a factor
of 12.

The visualization runs interactively with nodes and edges for all
but the huge graph. The huge graph runs interactively only if we
elide edges, otherwise it is 10 to 20 seconds between frames. This
can be attributed to only considering O(Log(N)) nodes per itera-
tion, while we do no such handling of edges. Also note that these
graphs contain many more edges than nodes. This means we reduce

Figure 7: A screenshot of the alternate layout with constant zero
degree of abstraction.

the cost of rendering significantly per iteration when we only con-
sider the nodes. Because LinLog places clusters close to each other,
it is sometimes “good enough” to only consider rendering nodes.

5.1.2 Newman Clustering and Alternate Layout

Newman Clustering achieves similar runtimes to Average Link.
However, it is ineffective when used in conjunction with LinLog
layout. If we use weighted graph edges inversely proportional to
their distance, then Newman behaves very similar to Minimum
Link clustering. That is, we note long chained clusters with a linear
decomposition rate. If we use an unweighted graph then we achieve
an exponential decomposition, however, by ignoring the geometry
of LinLog, clusters are sometimes formed that violate the DOA’s
monotonically increasing distance assumption. The end result is a
loss of smooth cluster interpolation as we approach a cluster with
our DOA lens.

The performance of our Alternate Layout is obviously superior
to LinLog in time complexity. However it results in a uniform,
unintuitive distribution of nodes. We find that only the clusters on
the lowest level of the tree end up close to one another, but other,
unrelated clusters can as well. There are not enough divisions of
the plane to separate different communities from each other.

5.2 Usability

In this section we run through three scenarios of use, one for each
of the sources of our datasets.

5.2.1 Scenario 1: Airline Clusters

In this scenario we consider a user in a more remote part of the
United States, like as Nome, Alaska. The goal of their using the
visualization is to explore different travel routes from Nome to the
rest of the country. The user first loads the graph in the visualization
and waits for LinLog to finish. Their first task is to locate their
city in the graph. Since Nome is a unique city, only connected to
local Alaskan cities by air, the user first scans the graph for smaller
clusters. They then examine these outlying clusters for Alaskan
cities. Sure enough, when the user finds Kodiak, Nome is the next

Figure 6: Resulting layout with huge graph.

Figure 8: A screenshot at the beginning of Scenario 1.

cluster over. From here we need to find flights to other airports.
We note that it is somewhat difficult to differentiate between Nome
and its neighbors, so we increase our geometric fisheye distortion.
Now we see there is a flight from Nome to a variety of cities like
San Francisco and Salt Lake City and smaller cities on the Aleutian
Islands.

Running through this scenario we note that following long edges
isn’t very easy using the system. It is simple to follow longer edges
through sparse regions, however edge-occlusion become a problem
if they cross tightly coupled regions of the graph, even with fisheye
distortion. This scenario obviously conflicts with the maxim of de-
emphasizing longer edges.

5.2.2 Scenario 2: Artist Clusters

Suppose we are writing a comprehensive survey on artistic move-
ments. We want to understand communities of artists and how they
have related through history. Perhaps we can use this visualiza-
tion as an exploratory study tool. After loading the artist graph
and computing a clustering, we choose a random cluster on the
graph and advance our lens over it. We encounter a cluster of artists
named, “Schwitters”, “Duchamp”, “Man Ray”, etc. all members of
the Dadaist movement. Also sharing in the nearby community are
“Jasper Johns”, “Rauschenberg”, both Pop Artists. What do Pop
Art and Dada have in common? We look them up in Google and
find, “Like dada, its European forerunner, [Pop Art] challenged the
concept of art by elevating the vulgar and ordinary to the status of
art object.” Well what do these specific artists have to do with one
another? Well, digging a little deeper reveals that one of Rauschen-
berg’s works, Trophy II, is dedicated to Marcel Duchamp. With
only a few glances at the graph we’re on to something.

In uncovering general trends, or subtle relationships, the tool
seems well suited. As long as the absolute fidelity of the visualiza-
tion, especially in regards to edges, isn’t required then information
is gleaned quickly and is likely to provoke further exploration.

Figure 9: A screenshot of Scenario 2.

Figure 10: A screenshot of Scenario 3.

5.2.3 Scenario 3: Actor Clusters

In this scenario we are interested in Hollywood stars. We want to
know what kind of networks are formed by actors who appear in
movies together. As in the other datasets we load the graph and
move the lens around and examine labels until we find something
familiar. Perusing the grpah, we note that this data has a differ-
ent structure than the previous graphs. Here the nodes form tight
clusters with far fewer inter-cluster edges. What intercluster edges
there are, are connected to a single actor. This tells us that stars
are more likely to appear in the same movies with actors the same
small clique. When they appear in movies with people outside this
clique, then it is with a group of only three of four people who
“bridge” different cliques. For example, we find Tom Cruise who is
grouped with many other big names like Denzel Washington, Bruce
Willis, etc. all in the same community. The only links outside of
this group are to three actors, Arnold Schwarzenegger, Harrison
Ford, and Samuel Jackson. Further inspection reveals more of these
standalone, connecting actors.

There is more to be said about this kind of network, but using the
visualization for only a few minutes says quite a bit about profes-
sional behavior in Hollywood. It is likely that a static graph could
yield similar information about the social network. However the
interactive techniques keep the frame rate manageable when using
focus plus context techniques like the fisheye lens.

6 DISCUSSION

The interactive techniques implemented in this report are a useful
and potentially scalable technique quickly learning the structure of
small-world graphs. They provide a good union of algorithm and
visualization, matching the graph clustering abstraction with visual
clustering while exploiting the exponential structure of the dendro-
gram to make significant performance gains in interactivity. The
technique certainly has visual appeal, important in making an ex-
ploratory interface inviting. A simple desire to watch the clusters
fall apart gives us a good overview of the structure of the latent
communities in the graph as a side effect.

As it currently stands, the algorithm is only potentially scalable.
As graph sizes increase, it becomes necessary to elide edges which
results in a loss of important information. Also, edge drawing in
particular is still difficult to read. The technique is very sensitive
to the parameters of the graph, thus it is important to maintain con-
trols to adjust the parameters (like fisheye radius) of the visualiza-
tion accordingly. Labelling is a persistent problem inherited from
other graph visualizations. Here it is especially difficult because
individual nodes agglomerate as regions of the graph become more
abstract, making difficult to remember which node we were origi-
nally inspecting.

When implementing the visualization, we found it best to err on
the side of speed and simplicity. For example, in switching to 2D,
creating a complex Voronoi shapes using fancy geometry became a
liability. Results are much nicer using a simple, but effective hack.
Likewise, in resolving unaddressed issues with the degree of ab-
straction layout, using simple approximations of the original intent
of the paper yielded nearly indistinguishable behavior.

7 FUTURE WORK

This visualization has enormous potential, but first a few impor-
tant obstacles need to be removed. The most important problem
involves edges. An edge drawing routine that obeys the same com-
plexity as the node drawing routine will greatly improve the scal-
ability of the visualization. We propose an adjacency matrix that
somehow intelligently spans the hierarchy in a scalable manner.
This result is crucial for making this technique relevant to more
diverse, larger datasets.

Another extremely crucial improvement is in implementing a la-
belling scheme for clusters. It is extremely tedious to mouse-over
every leaf node in a cluster. One simple solution is to allow a user
to “lasso” a cluster with the cursor and then write all its subcluster
labels to an adjoining list box. Or cluster bounding boxes from sec-
tion 4.4 could be used as a background area for drawing the names
of the nodes in that cluster. After using the visualization for a while,
anything seems better than mouse-over.

A strong addition to the visualization would be an intelligent use
of color to disambiguiate clusters. In [2], they use a priori clas-
sification of nodes to determine the colors of individual clusters.
A much better approach for a wider class of graphs is to compute
colors using only the topology of the clustered dendrogram.

While classified as preprocessing steps, it would be nice to see
advances in reducing the complexity of both the layout and clus-
tering algorithms. Perhaps, one day, some of the force model op-
timizations made by Jourdan [6] for MDS can applied to the Lin-
Log model. Likewise, perhaps fast, sparse clustering techniques
like Nonnegative Matrix Factorization can be applied to adjacency
matrices in such a way that exploits community structure [5]. Al-
though it produced an inferior layout, computing layouts from den-
drograms produced by [8] still seems like a promising direction.
Perhaps the addition of a little complexity at a time to the layout
can edge results towards being competitive while maintaining a su-
perior runtime.

The visualization can be applied to any small-world graph, but it
would be nice to see it applied in specific domains augmented with
some useful functionality. For example, with some better labeling,
it could potentially be used as a digital library browse interface [4]
where each cluster is a “subject” in a document corpus. Such hier-
archical examples abound.

Finally, a consequence of implementing the visualization in
prefuse is that it is readily deployable to other projects. The source
of this project will be distributed for use in other info-vis projects.
Alternatively an applet that accepts URLs of graph files can be read-
ily constructed for non-expert users to play with the visualization.

REFERENCES

[1] Guibas, L. and Stolfi, J., Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi Diagrams, ACM Trans-
actions on Graphics, 4:74-23, April 1985.

[2] Frank van Ham and Jarke J. van Wijk, Interactive Visualization of
Small World Graphs, In NFOVIS ’04: Proceedings of the IEEE Sym-
posium on Information Visualization (INFOVIS’04), 2004, 199–206.

[3] J. Heer, S. K. Card, J. A. Landay, prefuse: a toolkit for interactive
information visualization. In CHI 2005, Human Factors in Computing
Systems, 2005.

[4] A. Krowne and M. Halbert, An Evaluation of Clustering and Au-
tomatic Classification For Digital Library Browse Ontologies, 2004,
report, available at http://www.metacombine.org/reports/research/
metacombine a1 draft 20040704.pdf.

[5] D. D. Lee and H. S. Seung, Learning the parts of objects by nonnega-
tive matrix factorization, Nature, 401 (1999), 788-791.

[6] Fabien Jourdan, Guy Melancon, Multiscale Hybrid MDS. IV Lon-
don 2004, 8th International Conference on Information Visualization,
London, UK, IEEE Computer Society, 2004, pp. 388-393.

[7] M. E. J. Newman and M. Girvan, Finding and evaluating community
structure in networks, Phys. Rev. E 69, 2004, 026113.

[8] M. E. J. Newman, Fast algorithm for detecting community structure
in networks, Phys. Rev. E 69, 2004, 066133.

[9] A. Noack. Energy-Based Clustering of Graphs with Nonuniform De-
grees. Accepted for publication in: Proceedings of the 13th Interna-
tional Symposium on Graph Drawing (GD 2005, Limerick, Ireland,
Sep. 12-14)

[10] Andreas Noack. An Energy Model for Visual Graph Clustering. Pro-
ceedings of the 11th International Symposium on Graph Drawing (GD
2003, Perugia, Italy, Sep. 21-24), LNCS 2912, 425-436.

[11] D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’
networks, Nature 393, 1998, 440–442.

