
Accessible GIS Visualizations

Kaitlin Duck Sherwood∗

University of British Columbia

Abstract

There has recently been an explosion of tools that allow
people to interact with map-based data on the World Wide
Web, using Google Maps’ API. Aside from sattelite and ariel
photography, these applications have been point-based or
line-based, not area-based. This paper describes a prototype
of a system for visualizing area-based data, combining U.S.
Census Bureau population density information with Google
Maps.

CR Categories: H.2.8 [Database Management]:
Database Applications—Spatial databases and GIS;

1 Introduction

There is an abundance of United States GIS data that is
freely available. While The Crown retains rights to works
created by Canadian government employees[24], all informa-
tion collected by employees of the United States government
is, by statute, in the public domain[9].

Visualizing the data, however, has traditionally not been
practical for people who are not GIS experts. To visualize
the data has meant either

1. buying a commercial product like ArcInfo[8] by ESRI
(which is sophisticated enough that it is not possible to
purchase and download directly),

2. finding and installing an open-source GIS package and
understanding the data sets like inovaGIS[18], or

3. writing your own GIS visualizer.

The Web has reached a maturity level such that it is pos-
sible to deliver GIS data to lay users. However, as I will
discuss in the next section, this work is almost exclusively
restricted to displaying point sources of information.

This paper will discuss an application that makes area-
based data available. (By area-based, I mean data where
there are a set of areas, each with a unique associated data
value.) This application does so by rendering polygons with
colors based on the polygon’s unique data value, then com-
bining that with Google Maps. While this paper’s partic-
ular application uses U.S. Census Bureau information, any
kind of area-based data could be displayed in this manner:
school district average test scores, county sales taxes, water
district-based per capita water usage, etc.

2 Related work

With the Web, people have been starting to make
GIS data available to the masses as Web services.

∗email: ducky@webfoot.com

MapQuest[23], Yahoo Maps[17], Google Maps[14], Mi-
crosoft’s TierraServer[16], and Google Earth[13] have all
made maps available to non-experts.

Google has an API to its services that has become quite
popular. (Microsoft and Yahoo have APIs to interface with
their services as well, but they have not spawned as many
derivative works.) There are even at least two sites devoted
to reporting Google mashups[26][1].

However, these mashups almost all display collections of
points, with a virtual pushpin stuck into the map at points of
interest, including locations of craigslist housing listings[28],
UFO sightings[27], crime incidents[12], and traffic accidents
and road construction[25].

There are a few Google mashups that display paths
through the map, including traceroute[31] paths and an ex-
ercise distance calculator[22].

I found one set of web applications that outlines an area,
e.g. a ZIP code boundary[7].

I was only able to find one mashup that reported data col-
lected over an area, but it uses the map only to let the users
indicate which point they were interested in, then displays
the data separately as text[2].

There is a site that displays NY subway information as
an overlay[20].

There is one site that displays two Google maps
simultaneously[11], with the technique documented
elsewhere[19].

As far as I can tell, there is no mashup that displays area-
based information on interactive Google maps.

3 Description of solution

When using this as-yet-unnamed web service[29], the user
sees two squares, as shown in Figure 1.

The center square is a translucent map showing census
tract polygons. This center area acts sort of as a magic
lens to show population density. Each polygon in the inner
square is filled with a color determined by the population
density, with a higher saturation for higher density.

Buttons along the upper right hand side of the larger map
control what is rendered on the larger map. The standard
Map, Satellite, and Hybrid are there, as well as a new ”Cen-
sus” button. When the user presses the Census button, the
back map changes to show population density, just as in the
center square.

Each square’s map can be dragged independently. At the
end of the drag, the window that was not dragged is recen-
tered to align with the dragged window. While this means
that the two maps behave in somewhat opposite directions
– dragging the center map to the right means that the out-
side map will move to the left – this is a limitation accepted
in order to offload a significant amount of work to Google,
which will be discussed later.



4 HIGH-LEVEL IMPLEMENTATION 2

Figure 1: Screenshot

Figure 2: San Quentin

4 High-level implementation

4.1 Datasets

I got my data from the U.S. Census Bureau. As men-
tioned earlier, Canadian census information is owned by The
Crown. UBC students can use it for academic purposes, but
”the distribution of any data obtained under this agreement
outside this educational institution through sale, donation,
transfer or exchange of any portion of these data in any way
is strictly prohibited.”[30]

It turned out to be very useful to use a data set for a
region that I was personally familiar with. Not only was I
able to do a visual sanity check, but I was able to under-
stand some anomolies better. For example, when looking at
the population density distribution, I noted a few densities
that seemed outrageously high. When I examined California
Census tract 122 000 on the map, by being familiar with the
area, I was able to realize that I was looking at San Quentin
state prison, as is visible in Figure 2.

I was also able to notice some anomolous areas. In addi-
tion to two tracts near Palm Springs that listed thousands
of people living literally on the freeway in the desert (see
Figure 3), the barely-inhabited Farallon Islands are listed as
having a population of 1 518 people, and 4 250 allegedly live

Figure 3: Census tract on a freeway

at the mouth of a channel in Foster City.
To do this kind of mapping, I needed two sets of data

from the Census Bureau: information about the shapes and
locations of census tracts and the population in each tract.
The Census Bureau gives that information in many differ-
ent forms. I chose to use the California Tract Boundary
shapefile[5] and the SF1 population information file[6].

The boundary file had extra columns with the area and
the perimiter of the tract. While the file README warned
that those columns were generated as a side effect of an
internal project and we not to be used, I checked several
tracts against the area column and found that they were the
area in degrees. Note that while one degree N-S is a constant
length, one degree E-W varies with the latitude. With a
simple formula, I could transform the degree-squared area
into miles-squared areas.

(Note that the anomolies listed above were not related
to inaccuracies in the area column. The population of the
Farallon Islands and the Foster City slough were from the
population file, and the shape of the Palm Springs freeway
tract was wrong.)

4.2 Code

This unnamed application has a server-side piece (which gen-
erates the map of population density) and a client-side piece
(which combines the population map with Google Maps).

I wrote the server-side code in C++, using several public-
domain libraries.

1. I used the Shapefile C library[32] to parse the Census
Bureau shapefiles and population data files.

2. I used the gd library[3] to draw the polygons (as given
in the shapefiles), filled with a color chosen based on
the population (as given population data files) divided
by the area (as given in the shape file). I wrote files out
as PNG images.

3. I used the cgihtml library[21] to connect the program
to a Web server.

I wrote the client-side code in JavaScript, using the
Google API to combine the population density map with the
Google service, extending a technique developed by Adrian
Holovaty[11] and documented by Will James[19].

4.3 Pre-fetching

The separate dragging of the two different windows is sub-
optimal, but I had reasons for the design decision that led



4 HIGH-LEVEL IMPLEMENTATION 3

to that.
For each zoom level, Google divides the world into 256

pixel by 256 pixel tiles in a Mercator projection. When a
user displays a map area, Google fetches the tiles in the
user’s view and pre-fetches the neighboring tiles. It caches
those tiles so that they can be presented to the user quickly
when he or she moves the map to expose an adjoining view.
Those cache requests originate in the JavaScript on the lo-
cal machine. Without reverse-engineering some code that
Google takes some pains to keep hidden, replicating that
functionality on the client is a significant job.

In order to take advantage of this caching and pre-
fetching, the image being cached and pre-fetched must be
a map, not an overlay. Maps are background, overlays are
foreground. Maps do not, in the Google model, have things
behind them.

Adrian Holovaty uses a clever capability of cascading style
sheets[11] on his site, where he creates two Google maps and
uses the browser to manage the transparencies, via a CSS
”style” in the enclosing of the HTML ”div” elements.

The disadvantage is that these two maps are then separate
entities, not linked. Google does not have a way to dictate
that while one map is dragged, the other should follow. (It
does have events that recognize drag ends.)

There two other, more subtle advantages for my applica-
tion.

1. At higher (i.e. more zoomed out) zoom levels, the ren-
dering of the population density map is very slow com-
pared to fetching the Google map/satellite/hybrid tiles.
This method gives the users a fast means of changing
context without having to wait for the slow focus.

2. While the population density map is translucent, it is
not transparent. By not having it extend to the edges
of the background map, it is easier to examine in detail
underlying features: just move them out from under
the center square.

4.3.1 Color scale

I started out using a blue-yellow color scale. For the pro-
posal, I started with a scale from Color Brewer[4], but as I
needed the colors to be translucent, those scales ended up
being light enough that they were indistinguishable. I thus
bumped up the saturation, but the balance still didn’t look
right.

Instead, I switched to monochromatic red of varying sat-
uration. I had planned on using a eight- or ten-step scale,
but started out with 128-steps in order to see what the dis-
tribution of data looked like. I found that the range of the
population density was much higher than I had imagined
it would be. Excluding bugs in the data and state prisons,
the population density in California ranges from 0 to 98 500
people per square mile.

With such a broad range, it becomes very difficult to see
any variation in either rural or urban areas. There is a big
difference between (wealthy) populated Atherton and the
Emily Renzel wetlands, but that is hard to see with such a
big dynamic range. I found that I wanted all 128 levels –
and then some!

In the first California picture, Figure 4, tracts with more
than 100 000 people per square mile are solid red, tracts
with 0 people per square mile are solid white, and all other
densities are interpolated.

To a very good first approximation, California is empty.

Figure 4: All California with solid red for tracts with more than 100K
people/sq. mi.

Figure 5: All California with solid red for tracts with more than 20K
people/sq. mi.



4 HIGH-LEVEL IMPLEMENTATION 4

Figure 6: All California with solid red for tracts with more than 100
people/sq. mi.

In the second California picture, Figure 5, all tracts with
more than 20 000 people are solid red.

In the third California picture, Figure 6, all tracts with
more than 100 people are solid red, and yet there are still
large areas which are basically featureless.

The color mappings that proved so abysmal for the ru-
ral areas give a good level of detail in urban areas like San
Francisco.

However, the color mapping that was inadequately ag-
gressive to show rural areas is already overly aggressive for
urban areas.

The wide dynamic range against aggregating information.
It is very common for there to be huge differences in den-
sity in neighboring tracts, as in the case of San Quentin.
San Quentin is visible in the (non-scaled) non-aggregated
all-California picture, yet if I aggregated data, it would get
smeared into the lower level of its neighborly tracts.

Figure 7: San Francisco with solid red for more tracts with than
100K people/sq. mi.

Figure 8: San Francisco with solid red for tracts with more than 20K
people/sq. mi.

4.4 Caching

I had originally hoped to cache pages in order to bypass
the delay in rendering the population density map. For the
entire United States, I calculated that to cache all the maps
would take on the order of one terabyte. While that is clearly
more than a grad student should invest in, it is within the
realm of possibility for a small company.

However, if the user needs to select color mappings, then
the amount that needs to be cached explodes. If the user can
choose between ten minimum cutoff levels and ten maximum
cutoff levels, then that’s 100 terabytes, and a bit more than
companies not named Google would want to spend.

Furthermore, it seems that that amount of disk space
would be required for any subsequent service that presented
similar area data. School test scores, percentage of non-
white residents, and water district per-capita usage would
all be another 100 terabytes each.

The good news is that with a small amount of cleverness,
this should be a solvable problem.

First, the performance is good enough at low zoom levels
that perhaps those don’t need to be cached. The rendering
time is most strongly dependent on the number of polygons
to render. (For obvious proof, try out the application on an
area of Eastern California that is very sparsely populated,
then look at LA.) As Google doubles the magnification at
every zoom level upwards, dropping the bottom two zoom
levels reduces the caching needs by 3/4. If zoom level 3 is
also dropped, that reduces the space requirements by 7/8.

Second, rendering at the very lowest zoom levels is not
very interesting. At zoom levels 1 and 2, even urban census
tracts fill the tile completely or nearly completely. Zoom
level 3 is only marginally interesting. So even if performance
isn’t fantastic at lower zoom levels, perhaps nobody will care.

Third, I believe that the expensive operation is the render-
ing of filled polygons, not in coloring them per se. Imagine
rendering one set of tiles, with the color of each tract being
set to an encoding of the state and tract index. (Califor-
nia has under 8 000 tracts and has roughly 1/12th of the
U.S. population, so the total number of tracts in the U.S. is
probably under 96 000, which is well, well within the bounds
addressable by a 24-bit color space.) Call those ”the geom-
etry tiles”.

Now imagine that when the server needs to serve a tile,
it reads in the corresponding geometry tile, steps through
the color table, extracts the tract index, finds the data for
that tract, looks up the color for that data, and inserts that
color into the color table at that spot. (This has the effect of
changing the color of every pixel without having to do any



6 DISCUSSION 5

calculations.) When the entire color table has been walked,
it sends the resulting map to the requesting party.

In addition only having to calculate the geometries of ver-
tices once, this also amortizes the expense of determining
which polygons are visible in a tile.

5 Results

5.1 Color scale

I felt that performance improvements would be more valu-
able that setting color scales, and concentrated my (futile)
efforts there, not on finishing the color scale work.

I have implemented hooks in the server code to allow the
setting the ”minimum cutoff” and the ”maximum cutoff”,
where any density less than the minimum cutoff would be
rendered in white and anything more than the maximum
cutoff being rendered in pure red. (In fact, I have had those
hooks for a long time, and used them to generate the pictures
of California and San Francisco used earlier.)

What remains is to build selectability into the client side
code and to build a widget to simultaneously display the
current color settings and allow the user to set the ranges.

When Google’s code requests a tile, it attaches a query
string with the x, y, and zoom values to the base URL that
the client-side code specified. However, Google does not in-
sert a question mark to separate the query string from the
base URL, it requires one be in the base URL. I can thus
designate a base URL of the form http://webfoot.com/cgi-
bin/foo?minCut=0&maxCut=10000&.

Conceptually, it is very straightforward to add this to the
client side code. It is merely a Small Matter of Program-
ming.

Building the widget is slightly more complicated, but not
novel and not unique. It appears to also be a Small Matter
of Programming.

5.2 Caching

I wrote code for changing the color table entry already.
It should be working already. According to the gd
documentation[3], deallocating one color, then allocating an-
other is supposed to put the second color into the first color’s
newly vacated slot. There is some bug in either my code,
the gd code, or the documentation, and I haven’t figured out
which yet. It seems likely that it is in my code.

5.3 Scenarios of use

As described above, the application allows users to pan and
zoom through California data with standard Google map
controls.

There are a number of possible uses for this application,
particularly if one takes a broader view and sees it as a
prototype for an entire class of area-based information:

1. Idle curiosity. It is interesting to explore your world,
and this is one more way to do so. The census data can
point out interesting areas to investigate.

2. Geographically restricting physical-world searches. For
example, someone single might choose to look for tracts
that had a favorable gender ratio. Parents might look
for tracts with high school scores.

3. Data-checking census information. I was quite sur-
prised at first to find errors in the census shapefile.

Upon further reflection, however, I realized that with-
out the satellite images backing the census data, I might
not have been able to recognize when there was an is-
sue. I found myself frequently wondering about a tract,
switching to the satellite view, and seeing an explana-
tion.

5.4 Performance

The response time is adequate but not great at lower zoom
levels – about half a second system time to render a zoom-
level 4 tile of San Francisco (before web transfer delays). At
higher levels, it is horrid – on the order of 8 seconds system
time and 40 seconds user time to render all of California.

On the other hand, for almost all people, it is much faster
than the alternative method of visualizing population densi-
ties, which includes earning enough money to buy an ArcInfo
license, navigating through open source projects, or writing
one’s own visualizer.

6 Discussion

6.1 Lessons learned

Handing in an assignment a week early is very painful.
Working with analog videotape equipment is poor prepa-

ration for using Adobe Premiere. Watching other people
edit TV shows with Adobe Premiere is also poor preparation
for using Adobe Premiere. Furthermore, Adobe Premiere’s
documentation appears to be written for people who already
know how to use it.

6.2 Strengths and weaknesses

The application is poor at response times at high zoom lev-
els, as mentioned before.

The application is strong at filling an unexploited niche.
One of the strengths and weaknesses of this application

is that the work really only needs to be done once. Once
there is one application that shows area data appears, others
will get the idea. Once one entity produces the geometry
tiles, anyone else would be able to use them in their own
application

This is great for advancing knowledge and improving the
world’s access to information, but a lousy value proposition
for starting a company.

7 Future work

I plan to do the following:

1. Make performance enhancements, as discussed above.
This means tracking down the bug in my code and
adding a small amount of flow-control code to choose
when to write out a tile to disk. Afterwards, I would
need to populate the cache of tiles. However, I could
choose to do a form of lazy evaluation and not write
out a tile to disk until one person asks for it.

2. Write the small amount of code to give the user some
control over color mappings.

3. Write the code to dynamically generate a widget that
simultaneously displays the color mapping and allows
the user to change the color mapping.

4. Make the site more visually appealing and better doc-
umented.



REFERENCES 6

If I do the above, and the application proves popular with
people not related to me, I would explore expanding it as
follows:

1. I am interested in connecting other data sets. Some
would take only require changing one line of code to
select a different column in the SF1 data file (e.g. Asian
population density, Latino population density, density
of men, etc.) Another interesting type of extension is
to allow interesting ratios, e.g. gender ratio or ratio of
single-mother households. To do that stupidly would
require about four lines of code change. However, the
proper way to do this would be to add a configuration
file which listed which files to use and which records in
that file to use.

While XML is the emerging standard for data formats,
much of the interesting data is in legacy formats. It
might make sense to incorporate the Data Format De-
scription Language[10] into the configuration specifica-
tion.

2. It would be interesting to explore mapping two vari-
ables simultaneously. For example, it might be illustra-
tive to convert median income into a blue color com-
ponent and ratio of whites to non-whites into a red
component. White, red, magenta, and blue would then
correspond to the four corners of the income/racial bal-
ance matrix.

8 Bibliography

References

[1] aka Cube Monkey. Cool google maps blog. http://

coolgooglemaps.blogspot.com/.
[2] LLC AnalyGIS. S.r.c. http://65.39.85.13/google/

default.htm.
[3] Thomas Boutell. gdlib. http://www.boutell.com/gd/

manual2.0.33.html.
[4] Cindy Brewer. Color brewer. http://www.personal.psu.

edu/faculty/c/a/cab38/ColorBrewer/ColorBrewer_intro.

html.
[5] U.S. Census Bureau. California census tract bound-

ary data. http://www.census.gov/geo/www/cob/bdy_files.
html, 2000.

[6] U.S. Census Bureau. Summary file 1 census bureau pop-
ulation data. http://arcdata.esri.com/data/tiger2000/

tiger_statelayer.cfm?sfips=06, 2000.
[7] John Coryat. Zip code boundary map. http://maps.huge.

info/zip.htm.
[8] esri. http://www.esri.com/.
[9] United States Government. 17 united states constitution sec.

105.
[10] DFDL Working Group. Data format description language.

http://forge.gridforum.org/projects/dfdl-wg.
[11] Adrian Holovaty. Google maps transparencies. http://http:

//www.kokogiak.com/gmaps-transparencies.html.
[12] Adrian Holovaty and Wilson Miner. chicagocrime.org. http:

//www.chicagocrime.org/map/.
[13] Google Inc. Google earth. http://earth.google.com/.
[14] Google Inc. Google maps. http://maps.google.com/.
[15] Google Inc. Google maps api. http://www.google.com/

apis/maps/documentation/.
[16] Microsoft Inc. Terraserver. http://http://www.

terraserver.microsoft.com/.
[17] Yahoo Inc. Yahoo maps. http://maps.yahoo.com/.
[18] inovaGIS.org. http://www.inovagis.org/index.asp.

[19] Will James. Add your own custom map. http://http://

mapki.com/index.php?title=Add_Your_Own_Custom_Map.
[20] Will James. Google-ny subway hack. http://www.onnyturf.

com/subwaymap.php.
[21] Eugene Eric Kim. Cgihtml library. http://www.eekim.com/

software/cgihtml/.
[22] Toby Kinney. Google map tool. http://www.tobyk.com/

maps/.
[23] MapQuest. http://www.mapquest.com/.
[24] Government of Canada. Copyright act, revised statutes of

canada 1985, c. c-42, s.12.
[25] Greg Woo Ouais. Yahoo-google traffic-weather maps. http:

//traffic.poly9.com/.
[26] Mike Pegg. Google maps mania. http://googlemapsmania.

blogspot.com/.
[27] Poly9. Ufo maps. http://www.ufomaps.com/.
[28] Paul Rademacher. Housing maps. http://www.housingmaps.

com/.
[29] Kaitlin Duck Sherwood. Population data google mashup.

http://CaCensusOverlay.html.
[30] Data liberation initiative data use license. http://data.

library.ubc.ca/datalib/gen/dli.html.
[31] Mapulator. http://www.mapulator.com/.
[32] Frank Warmerdam. Shapefile c library. http://shapelib.

maptools.org/.


