
 1

JexVis: An interactive visualization tool for exception call graphs in Java.

Anirban Sinha1
Department of Computer Science

University of British Columbia, Canada

1 anirbans@cs.ubc.ca

ABSTRACT

Just as the structure of any system degrades over time as it evolves
& becomes more complicated, software systems are no exception to
this. A particular aspect of software systems is its exception
handling mechanism which also tends to get dirty with time. Jex, a
tool developed by Martin Robillard at University of British
Columbia is a static analyzer that extracts exception flow
information from Java programs. It generates a list of exceptions
that can be raised by any method of a class & presents this
information textually in the context of exception handling structure
in the program. In this paper, we present JexVis, a tool that uses the
textual information to generate an interactive visualization of
exception structure in any program or its modules. In the process of
design of JexVis, the author actually modifies the original tool, Jex
so that it produces a textual output in the form of exception call
graph which is then visualized using java’s swing capabilities.

C.R Categories: H.5.2 [User Interfaces]: Graphical User Interfaces
(GUI); D.2.5 [Testing and Debugging]: Error handling and
recovery; D.2.2 [Tools and Techniques]: User interfaces.

Keywords: Software Visualization, Exception Handling Design,
Error Handling, Jex, Exception Call Graph.

1 INTRODUCTION

To make design of robust software systems easy, modern languages
like Java incorporate well defined mechanism to handle exception
conditions. To be specific, these languages provide mechanisms to
explicitly raise exceptions at a point in the program & a separate
block of code or several blocks of code to handle the exception or
several types of exceptions that can be raised from that point. Thus,
the exception handling block is separated from the normal program
execution logic. This helps programmers to deal with the
exceptional situations & runtime errors separately from the original
program logic. However, despite the availability of these structures
built into the language & developer’s best intensions to structure the
system as neatly & as efficiently as possible, addition of new
modules invites new additional calls between methods &
incorporation of new classes & methods derived from existing
classes & methods. This increases complexity & invites degradation
of code. Exception generation & their handling are also not
protected from this degradation. Martin & Gail in their technical
paper [4] explain some of the root causes of exception degradation.
These include unanticipated or unchecked exceptions; exception
handler overload leading to a single exception handler unknowingly
subsuming unanticipated exceptions; exception propagation
upwards through the method call stack leading to inappropriate or
uninformed handling of the exception etc.
Manually understanding how exceptions are handled within each
method requires elaborate & concrete knowledge about the
exceptions that might arise as a method is executing, the exceptions

that are handled and the exceptions that are passed on through the
method call stack. This, needless to say, would be highly tedious,
even for simple programs & virtually impossible for larger projects.
Jex [10], designed at University of British Columbia by Martin
Robillard & Gail Murphy is a static analysis tool that provides
information about the exceptions that can be raised in a Java
program. For each method of each class, Jex outputs a description of
all exceptions that can be raised in the method. It includes the types
of the exceptions raised by subsumption and by polymorphic calls.
For example, if a method declares to raise IOExceptions, but in
reality raises both IOException and FileNotFoundExceptions (a
subtype of IOException), Jex reports each of the different subtypes
of IOExceptions that can be raised. Jex also reports the origin of
exceptions stemming from polymorphic calls by using a
conservative class hierarchy analysis algorithm. The information
reported by Jex is also more complete because it includes
information about the types of unchecked exceptions that can be
raised. This can be easily explained through the codes shown in
Figures 1 to 4 which are taken from the Jex paper [1]. Figure 1
shows the constructor for the Java.io.FileOutputStream class. Figure
2 illustrates the information generated by Jex that shows precise
information of various exceptions generated by the methods. A
naïve user, without the precise knowledge of various exceptions
generations would use FileOutputStream class in a way similar to
Figure 3 where a generic catch block accepts all different kinds of
exceptions. However, with the power of Jex, a more learned user
would now separate out various exception traps & will now have
different catch blocks for each of the different types of exceptions
generated as shown in Figure 4.
However, as is seen from the figures, the output generated by Jex is
in textual format where the user needs to parse the Jex output file
manually in order to extract meaningful information. This is not
very useful & again involves careful analysis & introspection on the
part of the programmer. JexVis tries to address this very issue by
creating a graphical interactive visualization of the exception call
graph structure so that a naïve user can easily understand how
exceptions are generated & propagated within classes & modules. In
order to achieve our target the author uses information visualization
concepts & ideas. For example, the same output generated by Jex is
now visualized into a tree structure in JexVis as shown in Figure 5.
Clearly, the interrelationships between the method calls & the
exceptions they generate are easily understandable.

 2

On placing the mouse pointer on the node corresponding to the
“open” method, the path from the parent to the exception generated
by the method gets highlighted in blue & the tool tip shows the full
method name. This helps the user to clearly understand which
method generates which exceptions. The user can use pan & zoom
to focus into a specific node, trace call execution along a particular
branch etc.
The current version of JexVis was designed using eclipse SDK [14],
along with Prefuse toolkit for graphical rendering [11]. The author
used Fedora Core 3 as his operating system platform for
development. JexVis, in the backend, calls Jex for actual static
analysis.

The rest of this paper is organized as follows. Section 2 discusses
some related work in this direction. Section 3 discusses JexVis in
detail including its several features & user interfaces. Section 4
discusses evaluation of the tool and scalability issues. Section 5
discusses some of the important information visualization lessons
learnt during the course of the project. Section 6 goes into some of
the main challenges faced during design of JexVis. Section 7 gives
some future directions for this work & finally section 8 concludes
the paper.

2 RELATED WORK

The Aristotle Research Group [13] has designed a set of tools for
static analysis of source codes from various programs. The main
infrastructure consists of parsers that gather language-specific
information, such as control-flow, local data-flow, and symbol
table. Other sets of tools use this information to perform additional
analysis, such as data-flow, control-dependence, pointer, slicing,
and visualizations. The various components of the program-analysis
infrastructure include the Aristotle Analysis System, the Java
Architecture for Byte code Analysis and the Rational Apex System.
Still other tools provide information for software-engineering tasks,
such as testing, regression testing, debugging, test-suite
management, and program understanding. Figure 6 elaborates this
point.
However, Aristotle Analysis tool is only based on SunOS 5.6
(Solaris 2.6) or higher and Perl & designers do not plan to port it to
other platforms. Further, it does not explicitly have Java exception
call graph analysis & visualization. On the contrary, JexVis & Jex

Figure 5: The JexVis rendering of the Jex file shown in
Fig 2.

 3

are built using Java and is therefore portable to different platforms,
as long as the platform supports java run time environment.

Prawn [6] & Pathfinder [7] are some other interesting projects
aimed at analysis of Java source codes & package structures but
neither addresses the exception structure effectively. Grove et al [5]
describe some theoretical analysis & representations of exception
flow in java with the help of Factored Control Flow Graph but does
not address the issue of effective visualization of exception flow
control.

3 JEXVIS DESIGN, FEATURES AND LIMITATIONS

This section discusses JexVis & its functionalities in detail. Section
3.1 deals with JexVis architecture & design from a software
designer’s point of view. Section 3.2 discusses the various steps
required to actually analyze & debug a software system through
JexVis. Section 3.3 discusses some visualization tools & features
designed into JexVis for effective analysis. Section 3.4 describes
some limitations & bugs still present in JexVis. Finally, section 3.5
describes some sample scenarios where JexVis can prove to be
useful to software designers & debuggers.

3.1 JexVis architecture

JexVis consists of several modules, each performing its own defined
set of functions. The modules & their interdependencies are shown
in figure 9. The main module is the GUI generator & user control
module. It is through this module that the user interacts with JexVis,
providing input source files to analyze, setting directories, setting
visualization options & getting the output from JexVis. Figure 7
shows the diagram of this main interface module.
The main static analysis of the code is done by Jex but before it
does so, a configuration file must be generated & provided to it
which it would parse for input source directories, packages, output
files & other options. This is done by the configuration file
generator module in JexVis which generates the configuration file
for Jex based on the inputs the user provides before the actual
analysis begins. Jex itself uses an open source java compiler KJC
[17] along with two other tools for analyzing the source code,
gnu.getopt [16] which is a command line parser & ANTLR [15]
(ANother Tool for Language Recognition) which is used for
constructing recognizers, compilers, and translators from
grammatical descriptions containing Java, C#, C++, or Python
actions.

The main module responsible for rendering the visualization is the
JexVis renderer which itself has several menu options so that users
can customize the rendering of the current tree. Figure 8 shows a
sample screenshot. The menu at the top can be hidden by the user at
his convenience and again restored by right clicking the renderer
window. This module takes the help from the XML parser that
actually parses the XML file generated by Jex to render the
visualization. Several helper modules are used by this main renderer
module so as to bring about effective visualization of the tree.
The entire rendering engine uses some inbuilt features, libraries &
methods from the prefuse toolkit [11] & some custom action
commands.

Figure 6: The Aristotle Analysis System Figure 7: JexVis main user interface

Figure 8: Rendering Module

 4

3.2 Analysis using JexVis

The analysis begins with collecting all the source .java &
corresponding .class files of various modules into specific
directories, putting the packages into proper sub directories & then
firing up JexVis. As of now, JexVis exists as a single eclipse
project. The author intends to distribute JexVis as a single java JAR
file in future so that running JexVis would simply mean running the
JAR file directly. The main user interface is shown in Figure 7.
From the menu, one should first add all the packages necessary to
compile the source codes. This can be done through a dialogue box
shown in figure 10 where the user can type in specific Java
packages & libraries. JexVis uses this information to generate the
configuration file for Jex as previously described. Next, the user
should input the source directories or single source files (if
necessary, not mandatory) into JexVis by clicking the menu as
shown in Figure 7. The corresponding diagram of this interface is
shown in figure 11. When one selects “open single source file” from
the menu, a usual common dialog box opens up allowing user to
select an individual source file.

With all these information gathered from the user, JexVis generates
the configuration file when the user selects “analysis” from the main
menu. JexVis then calls Jex engine to perform actual analysis of
source codes.
Rendering is performed by clicking “render” on the main menu as
shown in figure 7. JexVis shows a list of available XML files
corresponding to the input source classes for rendering as shown in
Figure 12(a) & 12(b).
Clicking OK renders the corresponding XML file. A sample
rendering window is shown in Figures 5 & 8.

GUI generator
& user control

module

Jex Static
Analyzer
Engine

Configurati
on File

Generator

XML parser

JexVis
Renderer

Helper modules
Gnu.getopt +
KJC + antlr
modules

Figure 9: JexVis Design

Figure 10: Dialogue box to input essential packages for
the code analysis.

Figure 12(a): Dialogue box shown on clicking render in
the main menu.

Figure 12(b): List of XML Files to render

Figure 11: Interface to specify input source directories.

 5

3.3 JexVis features & strengths

JexVis incorporates some nifty tools to help programmers analyze
the source code effectively. Some of these tools are inbuilt with
rendering; some can be configured according to the user preferences
from the rendering menu shown in Figure 16. These are discussed in
detail in the subsequent sections.

3.3.1 Use of path highlighting

JexVis has a very cool feature by virtue of which whenever an user
places mouse pointer on any node representing a method,
immediately, the entire path (i.e., the edges) leading up to its
children (which are the exceptions raised by this method directly or
indirectly) gets highlighted. Along with it the edge connecting this
node to its immediate parent also gets highlighted. This helps the
user to easily understand the kind of exceptions raised by a method
& the exception generation path. This feature is demonstrated in the
Figure 13 where we can see the entire highlighted path from the
node jexex.package2.person leading up to its children. Also, the
edge connecting this node to its immediate parent
jexex.package1.GenealogyModel also gets highlighted. We can
immediately realize that the jexex.package1.GenealogyModel
creates an instance of jexex.package2.Person class, thereby calling
its constructor, which in turn generates four different types of
exceptions each raised by the Java runtime environment.

3.3.2 Zooming

Ability to zoom-in to a particular section of the graph & zoom out
to get an overall context is a feature built-in with JexVis. Zoom in
can be done by pressing the right mouse button and dragging it

upward. Similarly, zoom out can be done by pressing the right
mouse button & dragging it downward. Figure 13 shows a portion
of the graph zoomed in to show the relevant edges & nodes.
Similarly Figure 14 shows a zoomed out view of the same graph.

3.3.3 Panning

JexVis also provides ability to pan & move the graph to a
comfortable position to view the relevant edges & nodes. Figure 14
shows the graph of Figure 13 zoomed out & panned in to a corner of
the window.

3.3.4 DOI & force directed layout

JexVis by default uses force directed layout design for graph
drawing. This means that, the nodes automatically align themselves
at an optimal distance from each other so that nodes & edges are
clearly legible with no zoom-in or zoom-out in effect. JexVis uses
degree of interest calculation [10] to put nodes that have DOI below
a threshold outside the viewable region. To overcome occlusion,
one can drag out a node out of a region by holding down the left
mouse button and dragging it out. This is shown in Figure 15 where
the node representing the method getRoot() has been dragged out.
When the node is released, the tree automatically adjusts itself to its
previous position on virtue of its predefined forces between the
nodes. It is clear from the figure that the highlighted blue edges still
show the relationship between the node being dragged, its parent &
the exceptions it generates.

3.3.5 Window border enforcement

Another cool feature in JexVis is the ability to enforce the graph to
stay within the window boundary, thus ignoring the DOI conditions.
All the nodes of the graph remain visible within the window. This is
particularly useful for small graphs or when force directed layout is
disabled so that the user has control over all the nodes & can
manually manipulate their positions. This enforcement can be
activated by selecting “Enforce Border” from the render options
menu in the render window as shown in figure 16.

Figure 13: Path Highlight leading to an exception node.

Figure 14: Pan & zoom out in action.

 6

3.3.6 Static & dynamic rendering

Static rendering disables force directed layout. All the nodes &
edges become fixed in the window & do not move on their own
until user drags them to a different position. This manual control is
very useful in many occasions when the user does not want the
graph to reposition itself but instead needs manual control. This
feature can be selected by selecting “Render as static” from the
render options menu from the JexVis renderer window shown in
Figure 16.

3.3.7 Use of color

All exception nodes are colored pink, environment nodes are
colored yellow, parent node (class node) is colored green,
constructor nodes are colored in magenta & the currently
highlighted node is colored red. All other nodes are white. This
helps the user to clearly classify different kinds of nodes & their
relative importance. This of color also creates a vivid tree-diagram
on the render window.

3.3.8 Use of tool tip

JexVis has a nifty feature whereby the full method name
corresponding to a node is displayed as a tool tip when the user
hovers the mouse over the node. For example, in Figure 17, a node
is only partially visible in the display window since the display is
heavily magnified. Thus, in normal course the node’s method name
is not visible. However, when the user hovers the mouse over the
node, the full name of the method appears as tool tip text & at the
same time the node gets highlighted in red as shown in the figure.

Tool tips are very useful in another context. If the fully qualified
name corresponding to a node has a text width larger than a
predefined value (set at 200 character-points), the names are
automatically truncated so that the nodes do not cause occlusion.
However, this truncation has some weird consequences and may
cause confusion as to the name of the class & the method of the
corresponding node. Tool tips come in rescue. When the user hovers
the mouse on one of such nodes, fully qualified names of the
corresponding methods are shown in tool tips. This is exemplified in
Figure 18 where we can see that the node in focus just shows the
method arguments in the node text & not the fully qualified method
name.

Figure 15: Dragging a node out

Figure 16: Render Menu

Figure 18: Tool Tip Text comes handy when displaying
full method names.

Figure 17: Tool tip text

 7

Without the tool tip, it would virtually be impossible to make any
guesses about the actual name of the method. Fortunately however
the corresponding tool tip provides complete information about the
method & its class.

3.3.9 Juxtaposed rendering

Another important feature of JexVis is its ability to show multiple
rendering side by side. The user can fire up more than one instance
of the renderer, each showing separate call graphs in different
windows, each independent of each other. Thus, programmers can
quickly view the call graph structure of some other class and
compare it with another. The XML file names are shown on the title
bar for the ease of the observer.

3.4 JexVis limitations & bugs

As is the case with all software tools, JexVis has its limitations too.
Some of the limitations of JexVis are directly related to the
limitations of Jex & the Prefuse toolkit. The most important
drawbacks of JexVis are:

1. JexVis does not scale very well with large projects having
their own packages & libraries. This is directly attributed
to the fact that Jex itself has several issues with
CLASSPATH settings & we need to modify the source
codes to reflect the package hierarchy relative to their
parent directory. This we found had to be done manually
and this becomes a very big issue with a large project that
has several multiple files & packages. With smaller
projects though, Jex & JexVis performs relatively
satisfactorily as is discussed in the evaluation section.

2. Another drawback of JexVis is that it can not handle very
large graphs within the viewable window effectively. To
address this issue, the author provides several options to
the user so that he can tweak the displayable region to his
convenience. However, much work is needed to be done
to make it really user friendly & convenient.

3. If a method is encountered more than once during parsing
& analysis stages, Jex writes the node corresponding to
that method more than once in the XML file. This creates
multiple nodes for the same method in the rendered graph.
The author found however that this drawback has some
side benefits as well. It helps to maintain symmetry &
balance in the graph which otherwise would become too
congested and/or unbalanced. Having a symmetry &
balance helps positively in the cognitive process, penalty

for this being the addition of extraneous nodes in the
graph. This addition can cause real problems when a
single class has too many method calls in it. Removal of
redundant nodes would require us either to tweak the hash
tables maintained by Jex or maintain a hash table of our
own to keep track of the nodes already visited & check
against this hash table every time we create a new node in
the XML file. Unfortunately, due to time constraints, the
author could not incorporate this in his code.

4. Another critical problem the author discovered is the
problem related to node names when the fully qualified
method name has characters greater than a threshold. The
“TextItemRenderer” class in Prefuse tends to abbreviate
the name in some weird way that it creates confusion to
the user. The author could not eliminate this bug, though a
work around to this was designed through use of tool tips
as discussed earlier.

5. Due to limited time available for this project, exhaustive
debugging & testing of all components of JexVis could
not be performed. Thus, JexVis might not perform as is
expected to for all different kinds of source codes & java
projects. If we could get more time we could have
performed an exhaustive analysis & checking of JexVis to
ensure it gives consistent performance with all different
kinds of source codes.

3.5 JexVis application scenario

JexVis can be effectively applied to analyze portions of large
projects, taking modules & sub systems separately to investigate for
possible effective & flawless use of exception handlers. It can also
be applied for code maintenance, upgradation & debugging. Its
graphical interface is easier to use than the original Jex utility which
should make it a popular tool in the hands of software programmers,
project managers, testers & software support engineers.

4 EVALUATION & SCALABILITY ISSUES

JexVis failed miserably in the context of very complex Java projects
like the Vibes project [19]. The author tried hard to get some results
visualized using JexVis but due to the underlying weakness of Jex
related to CLASSPATH settings, JexVis always failed at the point
where it called Jex engine to analyze the code. The failure often
always was Jex’s inability to recognize source classes & the
classpath confusion. We take this failure as the choice of a wrong
backend to analyze the code. Probably, either Jex needs to be
modified to make it more scalable, or we may need to look into
finding an alternative open source java static analyzer which at the
moment of writing this paper could not be found.
The author evaluated JexVis in the context of Genealogy graph
example having a very small set of java classes, provided in the Sun
java swing tutorial website [18]. We found that in this smaller
example, JexVis scaled well enough. All the figures shown in this
paper are from the same example except figure 6 & figure 20. The
author also tested JexVis against analyzing portions of large inbuilt
java libraries from Sun Java SDK. Figure 6 shows the analysis
results from JexVis for one of those classes, the
java.io.FileOutputStream. Since Jex analyses every sub classes
separately & generates corresponding .XML file, each of the
rendered graphs scaled well, since each of them dealt with the

Figure 19: Juxtaposed Rendering

 8

individual classes separately. The author also took another relatively
moderate sized Java project on “Minesweeper” game developed by
him to evaluate JexVis. It has about 8 source classes and 15 user-
defined packages, including some JDK packages. A sample
screenshot is shown in Figure 20. JexVis did not perform too badly
though the weakness issues still remained areas that required more
work.
Due to time constraints, more exhaustive testing could not be done.

5 LESSONS LEARNT

The author learnt valuable lessons during the course of the project.
They are listed chronologically below.

1. It’s really difficult to design a good static analyzer. The
initial target of the author was to design a static analyzer
of his own for his specific needs, but later it was realized
that this would really make the project too big to be
completed within stipulated deadlines. Even when he
found one, its weaknesses made the overall performance
of JexVis very poor.

2. Coming up with good information visualization ideas to
effectively portray data across to the end user is really
challenging & requires lot of experience & thinking. The
author feels that to some extent he really ran out of good
ideas for creating an effective visualization.

3. Choosing an effective & useful layout scheme for a large
graph is a complex problem.

4. Trying to provide more useful information to the user
without causing clutter and occlusion is tough. It takes
time & lot of thinking to build effective filters to address
this issue.

5. Zooming may not be the ideal solution for displaying
more information of a small region. It can cause more
problems than simplifying them. Deciding alternative
approaches to zoom is a difficult problem.

6. Scalability is an important issue for every information
visualization system. Designing scalable system for large
projects requires lot of planning, experience & ideas.

7. Use of specific toolkit can stifle creativity because one
tends to think in lines of the features & interfaces
provided by the toolkit which may not be suitable for all
different types of visualization problems. However,
toolkits can helps in rapid coding & design when time is
scarce.

6 CHALLENGES FACED & LINGERING ISSUES

The main challenge faced by the author was modifying Jex &
recompiling it so as to produce an output in conformation with the
XML file syntax & rules. Precise information related to the
functioning of Jex was not available & much time was spent reading
the source codes, trying to understand how Jex worked before its
code could be modified. When that was figured out, next challenge
was to make Jex compile in eclipse after setting the environment
variables. Another challenge was to create a proper user friendly
interface for the users so that appropriate configuration files could
be generated & Jex could be called directly from within the main
JexVis application. A major issue with Jex is still its environment
variable settings & appropriate configuration script. One strange
problem faced by the author was that java.lang was not found by

default by Jex in spite of setting the classpath variable in Linux as
well as automatic classpath settings done by eclipse. Therefore,
java.lang (rc.jar) had to be manually incorporated into eclipse
project environment. This issue still remains a major problem that
has to be solved before JexVis becomes fully portable.
Another challenge the author faced was to address the scalability
issue & in making the rendering effective & meaningful. Several
options were thought but unfortunately there was strict time
limitations, therefore some of these ideas could not be actually
implemented. These are discussed further in future directions
section. However, the author still believes that JexVis with its
currently built-in features will still prove to be useful to some
degree for software analysis.

7 FUTURE DIRECTIONS

JexVis provides basic functionalities for visualizing exception call
graphs. Much work is needed in this direction to make it
commercially useful & popular. Some of these are discussed in the
subsequent subsections.

7.1 Removal of repeated nodes

As discussed earlier, repeated nodes are a consequence of old Jex
behavior. This needs to be corrected so that nodes corresponding to
a unique method are represented only once & not multiple times.
This can be done by creating a hash table of those nodes already
written to XML file & checking against that table every time a new
node is being written into it.

7.2 Unintuitive node name truncation

As previously discussed, the default text node renderer used by
Prefuse truncates long texts in such a way that it becomes confusing
to the user. This default behaviour can be modified so as to provide
more intelligible truncation that does not confuse analyzers. Due to
time constraints we could not address this issue.

7.3 Visualization of package structure

Currently, package structure is shown by naming the nodes
preceded by package names. This is not very good means to show
package structure of the existing modules. A separate visualization
tool can be designed that shows the package hierarchy along with &
juxtaposed with the exception call graph.

7.4 Use of filters

Another effective way to show only certain specific nodes is to use
filters to filter out unimportant, uninteresting nodes & edges. Users
can be asked to enter the nodes they are interested in & only those
nodes & their path to the leaves (the exception nodes) can be made
visible leaving out the rest. This might also result in loss of context.
So better still, the other nodes & edges can be displayed in light
shades of gray so that they are faintly visible, keeping the user
apprised of the context. This is particularly useful if the graph
rendered has many nodes & edges.

 9

7.5 Enhanced tool tip

The tool tip text provided by JexVis shows only the basic
information about a particular node. Tool tips can be enhanced
showing additional information about the class & its members
and/or other attributes of the node in question. There is in effect no
limit to the amount of text that can be displayed in a tool tip. For
example, eclipse uses tool tips to provide detail information about
classes & methods, even shows sample example from java
documentation on their use. The same features can be added to
JexVis.

7.6 Use of a wizard style dialogue to easy users

Currently, JexVis uses menus for various user inputs. It would be so
much better if there were a wizard style dialogue that would guide
users through the various stages of the analysis process.

7.7 Use of appropriate color scheme

The color scheme the author used may not be the ideal color
scheme, especially people with disabilities. Probably more work is
needed to find out a more suitable color scheme.

7.8 Exhaustive testing with real life project codes

The author did not get enough time to test his implementation
exhaustively on a real life big enough project source codes. This
was partly because Jex did not prove to be scalable enough.
Exhaustive testing & debugging on huge dataset is necessary to
make this tool come to of any real use. This might require us to
redesign some Jex modules so that it becomes more portable.

8 CONCLUSION

In this paper, the author discussed JexVis, a static, offline
visualization system that visualizes exception call graphs in Java.
By using an interactive graphical visualization system, the
programmers will be better equipped to analyze, maintain & debug
large projects developed in Java. The front end was developed using
Java Swing with the use of Prefuse toolkit taking advantage of many
information visualization techniques. The author believes that
through use of this tool, much of the problems faced by
programmers dealing with complex java projects could be easily
solved though much work is still needed on JexVis to make it really
useful.

9 ACKNOWLEDGEMENTS

The author is really grateful to Martin Robillard who provided
useful information about Jex & its source code. The author also
drew inspiration from the 2004 fall term-1 information visualization

course project “NAV” by Meghan & Peter for writing this paper &
from the Prawn paper [6] for giving final shape to the project. I am
also grateful to Shawn Minto for giving me suggestion on the static
analysis part. Finally, the author is grateful to the instructor, Tamara
Munzner providing critical (& stern) comments after the update
presentations & otherwise that helped him to address some of the
important issues & give him directions in his work during the
project.

REFERENCES

[1] Analyzing Exception Flow in Java Programs, Martin P. Robillard and
Gail C. Murphy, Proceedings of the 7th European Software Engineering
Conference and 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering; Toulouse, France; 6--10 September 1999
[2] Designing Robust Java Programs with Exceptions, Martin P. Robillard
and Gail C. Murphy, Proceedings of the ACM SIGSOFT Eighth
International Symposium on the Foundations of Software Engineering (FSE-
8): Foundations of Software Engineering for Twenty-First Century
Applications (San Diego, California, USA; 8--10 November 2000; SIGSOFT
'00), ACM Press, pp. 2--10, 2000.
[3] Analyzing Exception Flow in Java Programs, M.Sc. thesis, Martin P.
Robillard, UBC, September 1999,
http://www.cs.ubc.ca/labs/se/theses/robillard99-msc.html.
[4] Regaining control of exception handling, Martin Robillard, Gail Murphy,
Technical Report Number TR-99-14, UBC, December 1st 1999.
[5] Efficient and Precise Modeling of Exceptions for the analysis of Java
Programs, David Grove et al, ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software tools & Engineering (PASTE 1999).
[6] Prawn: An interactive Tool for Software Visualization, Andrew Chan &
Reid Holmes, Information visualization course project, UBC, spring 2003.
[7] Pathfinder: Exposing the mental map of program navigation, Mik Kersten
(beatmik-at-acm.org), Information visualization course project, UBC, March
1 2004.
[8] J. Wu and M.-A.D. Storey. A multi-perspective software visualization
environment. In Proceedings of CASCON'2000, pages 41-50, 2000.
[9] S. Tilley H. Mueller, M. Orgun and J. Uhl. A reverse engineering
approach to subsystem structure identification. Journal of Software
Maintenance: Research and Practice, 5(4):181-204, 1993.
[10] Degree-of-Interest Trees: A Component of an Attention-Reactive User
Interface, Card, S.K. and D. Nation, Advanced Visual Interfaces. 2002.
[11] Prefuse: a toolkit for interactive information visualization, Proceedings
of the SIGCHI conference on Human factors in computing systems table of
contents Portland, Oregon, USA, Pages: 421 – 430.
[12] Jex, a Tool for Analyzing Exception Flow in Java Programs,
http://www.cs.ubc.ca/~mrobilla/jex/
[13] The Aristotle Research Group, Program Analysis based software
Engineering, http://www.cc.gatech.edu/aristotle/
[14] The Eclipse SDK, http://www.eclipse.org/
[15] ANTLR, http://www.antlr.org/
[16] GNU GETOPT,
http://www.urbanophile.com/arenn/hacking/getopt/gnu.getopt.Getopt.html
[17] KJC, http://www.dms.at/kopi
[18] Java Tutorial on use of swing components,
http://java.sun.com/docs/books/tutorial/uiswing/components/
[19] VIBES (Variational Inference for Bayesian Networks),
http://vibes.sourceforge.net/

Figure 20: Sample screen shot of JexVis renderer on a MineSweeper game module.

