
Scalability for High Cardinality in Steerable MDS - Final Report

Allan Rempel∗

University of British Columbia

Figure 1: MDSteer++ in action

ABSTRACT

Multidimensional Scaling (MDS) is a dimensionality reduction
technique that is concerned with preserving the high-dimensional
distance between points when those points are mapped to a low-
dimensional (typically 2-D) space. A number of techniques have
been developed in which the time complexity has been reduced
from O(N3) to O(N2)[4] to O(N

√
N)[1][2] to O(N 4

√
N)[7] to

O(N logN)[6]. In the process, however, the space complexity has
increased to O(N2) in that a matrix of precomputed distance values
is needed so that these values need not be repeatedly recalculated.
This matrix limits the size of the data set that can be processed ac-
cording to the main memory of the computer.

I demonstrate the use of techniques for offloading this data, us-
ing a file system and a database system, and discuss the effects and
how they demonstrate issues of scale in MDS. These techniques are
used in MDSteer++, a software system that performs progressive
user-steerable MDS. I describe the code development necessary to
achieve these goals, and outline areas of further research involving
MDS and MDSteer++ in particular. I also outline further code de-
velopment that would be appropriate in order to be able to release

∗e-mail: agr@cs.ubc.ca

MDSteer++ as a robust modular software system that could easily
be integrated into the code development efforts of others interested
in MDS.

CR Categories: K.6.1 [Management of Computing and Infor-
mation Systems]: Project and People Management—Life Cycle;
K.7.m [The Computing Profession]: Miscellaneous—Ethics

Keywords: MDS, multidimensional scaling, database

1 INTRODUCTION

Theory and practice must meet. Either can exist without the other,
and they sometimes do, but where theory and practice do not meet,
the result is often unsatisfactory. Praxis, the process by which ab-
stract concepts are connected with experienced reality, should be a
consideration wherever computer computer software is written.

This project is concerned with some practical considerations as-
sociated with multidimensional scaling. One of the most significant
practical considerations of any software system is scalability.

1.1 Scalability

Scalability is an important consideration in the development of
many software systems. It is not hard to write software that works
well on small data sets, but the real test of a system’s mettle is how
well it works on large data sets. In my experience as a software



developer in the computer animation industry, scalability is not al-
ways an easy thing to develop into a software system. It’s easy to
write a piece of software that processes 1000 data items, but what
happens when you have 1,000,000 data items? What happens when
600 users all want to work on the same project at the same time?
What happens when file sizes grow beyond 4 GB? (4 GB is the max-
imum size representable in a 32-bit unsigned integer, which along
with the 32-bit signed integer type (whose maximum value is half
that) are the most common formats for representing file sizes.)

There are many facets of scalability. It is important to know both
the theoretical (order-notation) and practical efficiency of a system.
Even though constants may not be considered significant in theo-
retical analysis, when a system runs twice or ten times as fast as
another, that is significant. It is also necessary to consider effi-
ciency in space (memory, disk, etc.) as well as in time. One way
to deal with time complexity issues is to use a progressive algo-
rithm, as that can have a huge mitigating effect on the time cost the
algorithm would otherwise have. In all these things, the effective
use of system resources such as memory, disks, networks, etc. is
important in avoiding wasted energy, which results from thrashing
and other behaviour modes that indicate the computer is operating
beyond its reasonable limits.

Even though more focus is traditionally placed on evaluating
time complexity, space complexity can actually be more of a lim-
iting factor. Time is more or less infinite; if an algorithm will run
in a reasonable time for data of size N, it will still likely run in a
reasonable time for data of size N + 1. However, disk space, mem-
ory, bandwidth, and other system resources are generally finite, and
with respect to those, it is possible to have a situation near the limits
where an algorithm will run on data of size N but not on data of size
N + 1.

While this project focuses on scalability with respect to the car-
dinality of the set of data points in MDS, dimensionality is also
something that should be considered, even though in practice, the
number of dimensions is vastly less than the number of points.
Nonetheless, incrementing the number of dimensions can have a
much more deleterious effect on performance than incrementing the
point count, which makes it worth consideration.

1.2 Multidimensional Scaling (MDS)

Multi-dimensional (also called high-dimensional or multi-variate)
data sets can arise from any of a number of different sources. Any
process that produces data that has a number of different variables
can be said to be multi-dimensional, where each variable is its
own dimension. Data from the social sciences, the financial sector,
bioinformatics, and other sources often produce multi-dimensional
data sets, and it is often desirable to be able to see patterns in the
data. Unfortunately, we cannot generally comprehend data of more
than 3 dimensions that is visually or geometrically laid out, because
we live in a 3-dimensional universe.

Various techniques have been devised to deal with with this lim-
itation by mapping the high-dimensional data into a 3-dimensional
or 2-dimensional space, because we are better able to understand
and process data represented that way. (Usually the focus is to map
to a 2-D space, because computer monitors are 2-D displays and
thus even a 3-D space still needs to get reduced to 2-D in order
to be displayed.) These are generally called dimensionality reduc-
tion techniques. However, such mappings are necessarily limited
in their ability to accurately represent high-dimensional data, in the
same way that a line segment is a limited 1-D representation of a
2-D circle, which itself is a limited 2-D representation of a 3-D
sphere. The nature of these limitations can vary between the differ-
ent techniques, and thus different techniques could be seen to serve
different goals.

Multidimensional Scaling (MDS) is a dimensionality reduction
technique that produces a p-dimensional embedding of data in a

q-dimensional space (where p < q). It specifically aims to pre-
serve the distance relationships between points, so that points that
are far apart in the high-dimensional space are also far apart in the
low-dimensional (typically 2-D) space, and points that are close to-
gether in the high-dimensional space are also close together in the
low-dimensional space. (Generally, a standard Euclidean distance
metric has been used for this calculation, but other metrics could
also conceivably be used.) However, the actual absolute placement
of points in the low-dimensional space does not necessarily corre-
spond to their placements in the high-dimensional space, or to any-
thing else for that matter. In fact, the MDS techniques discussed in
this paper all begin by randomly placing points in the 2-D space.
A spring model is then employed to move the points to more ap-
propriate locations (relative to the other points). The net effect of
this technique is that clusters of points, the relationships between
those clusters, and general large-scale features that stand out from
the noise in the high-dimensional space will be preserved in the
low-dimensional space; this is in fact the purpose of MDS.

It is worth noting that MDS is generally run on abstract data,
which is data that does not have an inherent geometric place-
ment in any space, high-dimensional or low-dimensional. For in-
stance, financial data, where some dimensions may be different
kinds of expenses, could be laid out somewhat arbitrarily in a high-
dimensional geometric space because there is no inherent geometry
to the numbers. This is in contrast to something like a set of 3-D
points produced by a particle system in the context of a computer
animation simulation, where the absolute geometric positions of the
points are very important.

It is also worth noting that the MDS implementations discussed
in this paper require their input to be point data as opposed to geo-
metric shape data such as manifolds, polygonal or spline represen-
tations of geometric figures, etc.

Figure 2 shows an example of MDS running on a 2-D data set
consisting of a 500-node small world network, ‘scaling’ it down to
2-D and producing another 2-D data set. Notice that the clusters and
the relationships between the clusters are preserved, even though
the absolute positions and orientations of the clusters are not. (If
the source data set were of high dimension, it would be meaningless
to speak of preserving the absolute positions of points.) This sort
of transformation from 2-D to 2-D is an important sanity-check; if
it works well, it gives confidence that transformations from higher-
dimensional spaces which we may not be able to visualize would
also work well.

2 PREVIOUS WORK

Quite a lot has been written about MDS previously, and a number of
algorithms have been proposed which perform the task with varying
degrees of efficiency.

2.1 Time Complexity Matters

Initial algorithmic approaches to MDS used an eigenvector analy-
sis of an NxN matrix, resulting in an O(N3) time complexity. They
also would require recomputation of the whole algorithm if the data
were to change even slightly. Subsequent algorithms used a force-
based scheme, where points would initially be randomly placed in
the 2-D space and a spring model would be used to pull together
those points that are close in the high-dimensional space (in par-
ticular, closer than they are in the 2-D space) and push apart those
points that are farther in the high-dimensional space than in the 2-
D space. This results in approximate solutions rather than exact
solutions, and the difference between these can be quantified by
the stress remaining in the system when the algorithm is finished,
which is the sum of the stresses in the individual springs. A sin-
gle spring stress between 2 points can be seen as a measure of the



Figure 2: Example of MDS transformation of 2-D small world network data set

difference between the optimal (theoretically) and actual distances
between those points. The approximate and iterative nature of this
algorithm opens the door to creative new more-optimal algorithmic
techniques as seen below. The basic implementation of the spring
model MDS still results in O(N3) time complexity, because for each
point we consider the spring forces of all other points in deciding
how to adjust the point, and generally, N iterations of that are re-
quired to reach an appropriate level of convergence. The spring
force acting on a point is given by

Stress =
∑i< j(di j−gi j)

2

∑i< j g2
i j

(1)

where di j is the high-dimensional distance between two points i
and j and gi j is the distance between those points in the low-
dimensional space.

In 1996, Chalmers published an algorithm which reduced the
time complexity to O(N2) by computing each point’s spring forces
against only a constant-size set of points, rather than all the other
points. [4] This was followed in 2002 by an O(N

√
N) algorithm

by Morrison, Ross, and Chalmers in which a subset of points of
size
√

N was run through the O(N2) algorithm resulting in a set
of well-placed anchor or parent points (as they have since become
called) with a time complexity of O(N) for that phase. The second
phase was to add and adjust all the remaining points by positioning
them relative to the set of parents, which for N iterations results in a
complexity of O(N

√
N).[1][2] Morrison and Chalmers then further

refined their technique by using a
√√

N size subset of their par-
ent set for their spring calculations to bring the overall complexity
down to O(N5/4) or O(N 4

√
N). [7]

Chalmers et al also ran experiments on a 3-D data set ranging
in size from 5000 to 50,000 points and on a 13-D data set ranging
in size from 2000 to 24,000 points, in which they confirmed that
the more efficient O(N

√
N) algorithm ran substantially faster than

(taking less than 1/3 the time of) the previous O(N2) algorithm. In-
terestingly, they also observed that the resultant placement of points
was actually better with the less expensive algorithms than with the
more expensive algorithm. The residual stress in the system was
between 15% and 30% less with the O(N

√
N) algorithm than with

the O(N2) algorithm. They also compared the performance against

the full O(N3) spring model algorithm and in addition to the huge
expected speed improvements (9 seconds vs. 577; 24 seconds vs.
3642), they also observed that the residual stress in the cubic time
algorithm was over 3 times that of their O(N

√
N) algorithm.

2.2 Time Complexity Doesn’t Matter

Jourdan and Melançon made one more improvement to this series
of algorithms, bringing it to O(N logN). The algorithm achieves
this by creating a constant size subset P⊂ S (where S is a size

√
N

subset of the whole set of points) and then ∀p ∈ P creating a sorted
list Lp consisting of points s ∈ S. Because these lists are sorted, a
binary search can be performed on them for each point that needs
to be placed, resulting in O(N logN) time complexity.[6]

Jourdan and Melançon also ran experiments similar to those of
Chalmers et al and made some interesting observations. First, they
noted that theoretically, for N < 5500, the O(N5/4) algorithm ac-
tually performs better than their O(N logN) algorithm. Moreover,
the O(N logN) algorithm doesn’t really begin to show much of an
improvement over the O(N5/4) algorithm until N gets to around
75,000 points. Their experimental data also showed that there was
only minimal difference in the performance of the O(N5/4) and
O(N logN) algorithms for N less than about 70,000.

They then made another improvement by introducing “Multi-
scale MDS” in which they incrementally expanded the scale of
dissimilarities (increasing the distance threshold). With this algo-
rithm, which does not improve on the O(N logN) time complex-
ity, they experimentally observed that it completed in less than half
the time of the previous O(N logN) algorithm, and with a resid-
ual stress level that was between 0% and 75% less than that of the
previous algorithm on data set sizes of up to 10,000 points.

2.3 Lots of Things Matter

Clearly, theoretical time complexity calculations and predictions
tell only part of the story. The part they tell best is what happens
when data sets become very large. This is of value of course be-
cause we want our algorithms to scale as well as possible in order to
use them on large real-world data sets. However, there are are other
considerations of scale besides time complexity, and one might ask
how often one actually runs these algorithms on really large data



sets, or how capable the hardware on which the algorithms are be-
ing run is of scaling up to very large data sets.

Munzner et al have addressed these issues of scale by intro-
ducing steerable and progressive MDS.[11] The progressive aspect
comes from immediately and continuously displaying the points
in the 2-D space as their positions are calculated, thereby giving
the viewer real-time information on the progress of the placement.
The steerable aspect comes from introducing a level of interactiv-
ity by allowing the viewer to select areas of the screen on which
to concentrate further processing. Together, these two aspects al-
low a viewer in an interactive environment to obtain the desired
information from the MDS process in less time than with previous
methods, because unnecessary avenues of computation are put on
the back burner while more relevant avenues are processed more
quickly than they would be otherwise. (The progressive aspect is of
particular interest to me as my previous research included work on
progressive transmission of images using wavelets.[9])

They further refined this technique by rewriting the MDS archi-
tecture in C++ (where it was previously implemented on the Java-
based HIVE infrastructure of Ross and Chalmers[10]) using a GUI
written with the Qt library and OpenGL. They also made the tech-
nique more fully progressive than it was before, and identified and
addressed some artifacts of the steerability.[5] The result is MD-
Steer++, which is the software system that is the focus of this paper.
The code base of MDSteer++ is portable between Windows and
Linux, with only minor changes in the makefile. Figure 3 shows
a screen shot of the program running on a 5000-point extruded S
curve data set.

With the transition of the MDS algorithm from one that would
run without user input (and could thus run in the background) to
an interactive process, the actual and perceived speed of process-
ing (apart from the time complexity) became increasingly impor-
tant considerations. Anything that could noticeably improve that
performance would be helpful.

One characteristic of MDSteer++ is that it precomputes the high-
dimensional distances between all the points and stores them in a
distance matrix whose size is given by

Size =
points2− points

2
(2)

so that they need not be repeatedly recalculated. Thus, while the
speed of the system has improved, the space complexity has in-
creased to O(N2) This matrix limits the size of the data set that can
be processed, based on the available main memory of the computer.
Offloading this matrix to an area of subsidiary storage would sig-
nificantly help improve the ability of any given computer to process
a much larger data set.

Theoretically, MDSteer++ was designed to be able to handle data
sets of 300+ dimensions and 1,000,000+ points. However, prac-
tically, it is of course limited by system resources, in particular,
memory.

3 REDUCING THE MEMORY FOOTPRINT

The question which spawned this whole project is whether offload-
ing the distance matrix to a database would yield an improved abil-
ity to run MDSteer++ on large data sets. In the process, it occurred
to me that databases consist of software, file systems, and overhead,
and that if MDSteer++ were to just write the file directly to the lo-
cal disk, that would likely be faster (and perhaps a better test of
offloading the distance matrix) than using a database. In the end, I
did both.

The coding component of this research consisted primarily of
finding ways to offload the distance matrix mentioned in Section 2.3
so as to help alleviate the limitation that this imposes on the size of

Figure 4: System memory without MDSteer++ running

the data set that can be considered, which would otherwise be re-
stricted to the order of 10,000 points. (In my experiments, 5000
points appeared to be about the limit that my test platform was ca-
pable of processing.)

Figures 4, 5, and 6 show the breakdown of memory usage on
the test platform in each of 3 configurations: without MDSteer++
running, with MDSteer++ running on a 2000-point data set, and
with MDSteer++ running on a 5000-point data set. Clearly, to run
on data sets larger than this, it is necessary to offload the distance
matrix from main memory to someplace else.

3.1 Distance Matrix in a Regular File

Storing the distance matrix in a regular file turned out to be rea-
sonably simple, as long as care was taken to do it efficiently.
The low-end Linux machines that were used as test platforms had
reasonable-sized local disks with 3 GB of free space for the parti-
tion on which /tmp was located. Because these distance matrices
are not needed beyond the end of an MDS run, /tmp was an ideal
place to locate them. Being on the local disk would also mean it
would be much faster than any network-mounted disk.

Linux has convenient functions to create filenames in existing di-
rectories in which to place temporary data without worrying about
clobbering an existing file with the same name. The other important
feature which had to be coded was the ability for random access.
The lseek() function in Linux provided the necessary ability to
jump to any location in the file (as if it were a simple array in mem-
ory) and read or write the appropriate number in that exact location.

The size of the file was the size (as determined in Equation 2)
multiplied by the size of a data element. MDSteer++ uses the
C/C++ type double, a double-precision floating point type vari-
able which is 8 bytes long, for its distance values. The 2000-point
data set required a 16 MB distance matrix file, and the 5000-point
data set required a 100 MB distance matrix file.



Figure 3: Screen shot of MDSteer++ on a 5000-point extruded S-curve data set

Figure 5: System memory with MDSteer++ on a 2000-point data
set

Figure 6: System memory with MDSteer++ on a 5000-point data
set



3.2 Distance Matrix in a Database

Even though storing the distance matrix in a regular file provides
a measure of offloading, the regular file is being stored on a local
disk on that same computer, which could be caching it as well. So in
effect, it’s possible that the above test might have no real difference
with storing the distance matrix in regular memory. But if the data
were definitely offloaded from the test platform machine, then there
would be a real difference.

As in the previous section, the database would contain tempo-
rary information, useful only during the MDSteer++ run. Thus the
constructor was designed to CREATE the appropriate database ta-
ble, and the destructor was designed to DROP it. Random access
was not difficult because that is exactly what the SQL database op-
erations SELECT and UPDATE are for. (SQL commands are cus-
tomarily capitalized.)

Storing the distance matrix in a database was an enterprise
fraught with a series of roadblocks and plans to circumvent them.

1. Once the database server daemon had been established on an
appropriate machine (other than the test platform machine),
attempts to connect to the database over a network were met
with failure. Attempts to resolve that were unsuccessful in the
available time.

2. If you can’t beat ’em, join ’em. I tried running MDSteer++
on the database machine itself, but that was unsuccessful be-
cause the database machine doesn’t have the appropriate X
Windows libraries to allow it to run an X process for display
on a remote machine. Moreover, it would not have been a par-
ticularly good test anyway because again the database func-
tionality would be running on the same machine as the MDS
algorithm.

3. Don’t display the MDSteer++ X window. I tried disabling
all the windowing functionality in MDSteer++ just to see if
it would do the appropriate back end calculations in a GUI-
less environment, but the system’s front and back ends are too
integrated with each other to accomplish that in the available
time frame. For the morbidly curious, the attempt at disabling
windowing functionality included simulating all the back-end
MDS calls, which would normally be made from a method
of the GLBox class (a GUI class which could not be instanti-
ated), by calling them from a new static method in that same
class which would get around the need for an object of that
class to be instantiated.

In pursuing this avenue further, the best course would be to con-
tinue attempts to access the database over the network as indicated
in item 1. Running the database on the same machine as MDS
would interfere with tests of MDS scalability on that machine, and
if only the back end is run and appears to work, there is no way to
observe the results to confirm successful operation.

4 RESULTS

The testing platform I used was a low-end Pentium III running at 1
GHz, with 256 MB of RAM, running Linux. On this platform, I ran
MDSteer++ on the 3-D extruded S curve data set, with cardinalities
of 2000 and 5000. When testing scalability limits, using an aus-
tere computer is advantageous because then one can more readily
observe performance degradation on smaller data sets.

4.1 Distance Matrix in a Regular File

On a 2000-point set, the performance was comparable to that of the
system with the matrix in memory. I am uncertain as to whether the

file system is just that efficient, or whether the file was being cached
in memory, which would effectively render this approach similar to
simply storing the matrix in memory and swapping as necessary.

On a 5000-point set, the performance was comparable to that of
the system with the matrix in memory, until the algorithm got to the
point where about 2000 points had been placed and 3000 remained
to be placed. At that point, performance dropped off precipitously,
and I terminated the runs before completion. For example, the first
2000 points would be placed on the order of minutes, but the next
200 would require about 2 hours to be placed. What exactly was
happening that would cause the system performace to degrade so
significantly at that point remains to be determined.

4.2 Distance Matrix in a Database

If the tests using the distance matrix had been successful, it is highly
likely that the database overhead, network communication, slow-
ness in the database server, and slowness in NFS (if used) on the
database server would cause significantly slower performance of
MDSteer++. Nonetheless, this is an interesting avenue to pursue,
even if only to verify that.

5 CODE CHANGES

I made the following modifications to the MDSteer++ code base
in my local copy of the code. Some of these changes should be
checked in to the version on Sourceforge, while others are of a more
ad hoc nature and should undergo more refinement before being
checked in. The transition of the code base from being a research
product to being a system for dissemination and use by others is a
significant one. Conveniently, I can look to my own experience in
learning this code for insight into how best to document and struc-
ture it to maximize understandability for other users like myself,
where I imagine myself to be somewhat representative of the target
audience.

• I made some necessary changes for MDSteer++ to build and
run on Linux. These changes should be appropriately inte-
grated so that a single code base can be used on either Win-
dows or unix platforms.

• I fixed the DistanceMatrix constructor to properly initialize
the size variable.

• I added logging output to the following functions to better
observe the volume of data that MDSteer++ is using:

– In the DistanceCalculator constructor, I added logging
output to show the number of items in the ArrayDis-
tanceMatrix and the number of items in the matrix as
reported by its getSize() function (to confirm that my
bugfix worked).

– In the ArrayDistanceMatrix constructor, I added log-
ging output to show the number of items in the array
and the size of the array in bytes.

• I added a pair of files, FileDistanceMatrix.[h|cpp], following
the format of the existing ArrayDistanceMatrix files. These
new files perform the DistanceMatrix operations but store the
data in a file instead of in an array in main memory.

• I added a pair of files, DatabaseDistanceMatrix.[h|cpp], fol-
lowing the format of the existing ArrayDistanceMatrix files.
These new files perform the DistanceMatrix operations but
store the data in a database instead of in an array in main
memory.



• I changed the structure of the USE DISTANCE MATRIX
and USE HASH TABLE MATRIX constants. The for-
mer is now a numeric value from 0 to 3, rather than a
boolean, and the latter has a numeric value of 2. I also
added 3 new constants, USE NO DISTANCE MATRIX,
USE ARRAY DISTANCE MATRIX and
USE FILE DISTANCE MATRIX with values of 0, 1, and 3
respectively. I also changed all references in the code to these
constants (specifically in DMDataItemCollection.cpp and
DistanceCalculator.cpp), so that USE DISTANCE MATRIX
is now a constant that is equal to one of the other constants,
depending on the mode of operation desired. Note that
SpringModel.cpp did not need to be changed because the nu-
meric use of USE DISTANCE MATRIX (0=no, [1..3]=yes)
does not diminish its suitability for use as a boolean value.

6 FURTHER RESEARCH

The most immediate avenue of further research would be to con-
tinue trying to examine how the software behaves with the dis-
tance matrix stored in a database. Even though overall performance
would likely be much slower because of the database overhead, it
should allow even low-end computers to run MDS on large datasets
without exhausting any resources except time and the patience of
the user.

Since MDS preserves high-dimensional large-scale features such
as clusters in the low-dimensional space to which it maps the points,
one might ask whether and to what degree smaller-scale features
are preserved. For instance, if the cardinality of the data set is
very high, high enough that the set can be observed to have fractal
characteristics, would the MDS technique transfer some of those
characteristics to the lower-dimensional space as well? What other
geometric features could be mapped to the low-dimensional space
through MDS?

What happens in MDSteer++ when the user doesn’t steer any-
thing? It is similar to the behaviour observed by Chalmers et al in
their work? Are the time complexity and residual stress similar to
those observed by either Chalmers et al or Jourdan and Melançon.
To the degree to which the MDSteer++ algorithm is different than
those in the previous works, what can we say about those differ-
ences and similarities?

7 FURTHER CODE DEVELOPMENT

There are a number of things that could be done to make MD-
Steer++ more appropriate for widespread release.

• The system currently specifies the entire UI in the .cpp files.
Those commands should be abstracted out into .ui files such
as would be created with QT Designer. This would make the
overall GUI layout much more clear and easier to modify, and
would draw a nice line between basic GUI elements and the
code that is written to deal with those elements for the pur-
poses of this application.

• A much clearer line should be drawn between the MDS func-
tionality and the UI components. For instance, a function that
deals with the percentage of anchor points should not be part
of the GLBox class; the former is back-end functionality and
the latter is UI functionality. This increased modularity could
result in MDSteer++ providing not only an executable but also
one or more libraries which others could link in to their soft-
ware to help satisfy their own MDS needs.

• In general, the system should be made as modular as possi-
ble. North and Shneiderman have suggested a model of info-

vis tool development in which users can construct more com-
plex visualization tools by ‘snapping together’ tool elements
in their own customized ways.[8] This is an excellent idea,
but it should be taken one step further and applied to compo-
nents of visualization tools in general, whether back end or
front end. An MDS engine should not be married to a partic-
ular interface, and by separating these components and poten-
tially creating a set of protocols for communication between
the front and back ends, it may be possible to realize the goals
of “Snap-Together Visualization” in broader ways than North
and Shneiderman have suggested.

• MDSteer++ should have a mode allowing it to run on a data
set without user input or GUI components. This might result
in a reversion to the previous MDS algorithms of Chalmers et
al, or could be something new and different.

• The DISTANCE MATRIX constants mentioned previously
should be replaced so that it is not necessary to recompile the
source code in order to try using different kinds of distance
matrix storage. Ideally, it should be possible to create a single
executable for a particular platform and be able to distribute
that, and make recompilation only necessary for those who
wish to play with the source code themselves.

• The moc * files are automatically generated and should not
form part of the set of checked-in files for this project.

• The code should be cleaned up so that it does not generate
compile-time warnings.

• The changes necessary to make the code compile on Linux
should be carefully integrated so as not to damage the ability
of the code to compile on Windows. In addition, it would
be worthwhile to see what if any changes would be required
for the code to compile on a Mac OSX platform, in order to
achieve broad cross-platform operability with a single code
base.

• I am highly curious as to whether and by how much an MDS
implementation in Python would be slower than the current
one in C++. If the efficiency hit is not too severe, it might
be very interesting to reimplement this system in Python, es-
pecially if some restructuring of the code base is necessary
anyway in order to achieve some of the desired modularity
and other goals stated above. The resultant code would likely
be more portable than the current C++ implementation is, and
have a much smaller code base in terms of lines of text. But
the biggest advantage is that if the code base is appropriately
structured, some modularity comes for free because Python
scripts can be simply and natively run at any level without the
need to construct specific libraries or executables.

8 CONCLUSION

In this project, I have examined some scalability issues in multidi-
mensional scaling in general and in the MDSteer++ software sys-
tem in particular. Previous research on MDS by a number of authors
has provided a good context in which to consider scalability and ef-
ficiency in MDSteer++. I have been successfully able to offload the
distance matrix that MDSteer++ creates in order to more efficiently
perform its MDS calculations. However, questions remain as to
how effective a test this is because operating system considerations
such as caching and swapping could interfere with these tests. Of-
floading the distance matrix to a database would get around these
issues, but likely at a signficant cost due to network communica-
tion, database software overhead, and other factors. Nonetheless,
this avenue of study will be continued, and tests remain to be done



to see how MDSteer++ performs with the distance matrix stored
in a database. Finally, I am excited about the prospect of contin-
uing the work needed to get MDSteer++ ready for prime time use
by others interested in MDS. In the CPSC 533C class project pre-
sentations, I was surprised by how many other projects used spring
models and data sets that could make use of MDS. If MDSteer++ is
made sufficiently useful and easy to use, it could be used not only
by those interested in MDS per se but also by anybody who could
benefit from using MDS, purely as a user, in their own work.

REFERENCES

[1] G. Ross A. Morrison and M. Chalmers. A hybrid layout algorithm for
subquadratic multidimensional scaling. In Proc. IEEE Symposium on
Information Visualization, pages 152–158, 2002.

[2] G. Ross A. Morrison and M. Chalmers. Fast multidimensional scaling
through sampling, springs and interpolation. In Information Visual-
ization, pages 68–77, 2003.

[3] Authors Unspecified. A Guide to Using MDSteer++ Alpha Release
0.5, February 2005.

[4] M. Chalmers. A linear iteration time layout algorithm for visualizing
high dimensional data, 1996.

[5] T. Munzner D. Westrom and M. Tory. Progressive binning for steer-
able multidimensional scaling. 2005.

[6] F. Jourdan and G. Melançon. Multiscale hybrid mds. In Intl. Conf. on
Information Visualization (London), pages 338–393, 2004.

[7] A. Morrison and M. Chalmers. Improving hybrid mds withi pivot-
based searching. In Proc. IEEE Symposium on Information Visualiza-
tion, pages 85–90, 2003.

[8] C. North and B. Shneiderman. Snap-together visualization: Can users
construct and operate coordinated views? November.

[9] Allan Rempel. Fast progressive transmission of images using wavelets
with sorted coefficients. Master’s thesis, University of British
Columbia, 1997.

[10] G. Ross and M. Chalmers. A visual workspace for hybrid multidimen-
sional scaling algorithms. In Proc. IEEE Symposium on Information
Visualization, pages 91–96, 2003.

[11] M. Williams and T. Munzner. Steerable, progressive multidimensional
scaling. 2004.


