
Predicted Transcription Factor Binding Site Viewer

Andrew A Carbonetto ∗

CPSC 533, 2005 Final Project

University of British Columbia

Department of Computer Science

Vancouver Canada

ABSTRACT

It has been shown that transcription factors can play a significant
role in gene expression. The ability to predict the location and clus-
tering of binding sites for transcription factors, and later the con-
firmation of such sites, can play a pivotal role in medical research.
Typical prediction methods produce a high level of false positives,
sometimes in the area of 70% of the hits. These datasets are typi-
cally large (approx. 4000 hits for a 1000bp sequence), and verifying
each hit individually can be expensive, and time consuming. TFBS
viewer is a display tool to view and navigate these typically large
sequences, but more importantly, the viewer provides several tools
for comparison with itself and related species. The efficient speed
and comparison capabilities of the viewer make it a good candidate
for binding site searches.

Keywords: Information Visualization, Transcription Factor Bind-
ing Sites

1 INTRODUCTION

It has been known for quite some time, of the importance of DNA
and DNA mutation. Small changes of single or few nucleotides can
have detrimental effects to an individual. Some can cause fatal de-
ceases, such as cancers, others have little to no known effect, still
more can cause an advantageous mutation that can lead to evolu-
tion.

In studying these changes, we can classify them into three cate-
gories:

1. Deleterious: a mutation that reduces the chances (or the fit-
ness) of an individual to survive (possibly even fatal).

2. Advantageous: a mutation that increases the chances (fitness)
that an individual will survive

3. Neutral: a mutation that has no effect on the survival (fitness)
of a species.

Kimura’s [1963] ”Neutral Theory” states that most mutations are
usually Deleterious or Neutral, with very few being advantageous.
Ohta expanded Kimura’s theory [Ohta, 1992] to included a Nearly
Neutral set. The effects of a Nearly Neutral mutation being very
small to the individual’s survival. Ohta stated that Nearly Neutral,
Neutral and Deleterious mutations are by far the most common mu-
tations, while Advantageous mutations are rare.

When comparing these theories on distantly related species, we
can definitely see some long term effects of Neutral and Nearly-
Neutral mutations. Most of these mutations are not important be-
cause they happen to lie within sections of the individual’s DNA
that are not important. Advantageous or Deleterious mutations nor-
mally lie within important areas of the DNA. If we compare two dis-
tantly related species, we can assume that areas of the DNA that are

∗e-mail: acarbo@cs.ubc.ca

diverging are unimportant (the so-called ”Junk DNA”), while areas
that are conserved are important. This evolutionary phenomenon is
called genetic drift.

Researchers have made used of genetic drift when comparing
related species, in an effort to understand the effects of evolution.
Sorting through the Junk DNA to find interesting and important
DNA can be frustrating, because of the level of noise that is often
experienced. This noise can sometimes be confusing to an observer,
and often takes some time to filter the set to manageable size.

1.1 Biological Data - Gene Transcription Regulation

DNA encodes for the building blocks of an individual, and none
more so then an individual’s gene’s. The process that reads the gene
and writes a new protein is called Transcription. If the transcription
process is halted by a mutation, it can often have deleterious con-
sequences. We can obviously see that genes will be well conserved
between related species.

The mechanism that initializes and regulates transcription is built
up of individual Transcription factors - proteins that factor into the
transcription of a gene. These Transcription Factors first bind to
the DNA sequence to have an effect on transcription. Common ef-
fects of Transcription Factors involve enhancing (an increase in) or
silencing (a decrease in) the number of times that a gene is tran-
scribed (called the expression of a gene or its protein product), or it
can effect the protein end product (genes tend to code for more then
one protein). It has been shown that the destruction or creation (by
mutation) of these binding sites can influence the transcription of a
gene. There exists motivation to detect and predict how and where
these Transcription Factor Binding Sites (TFBS) are located.

There exist several large databases that maintain a collec-
tion of TFBS; The TRANSFAC database [at http://www.gene-
regulation.com/] or JASPAR [Sandelin et al. (2004) - at
http://phylofoot.org/]. These databases store the exact sequence of
DNA that a Transcription Factor bound to. A summation of the fre-
quency of such binding sites yields a frequency matrix, which can
be used to predict and detect such Transcription Factors.

There are several TFBS predictors available (for non-
commercial) for trial. MatInspector [Quandt K et al (1995) and
Cartharius K et al. (2005) - http://www.genomatix.de/] takes a set
of motifs (as default, the TFBS frequency matrices from TRANS-
FAC are used) and an input sequence of DNA to predict the location
of TFBSs. Consite [Sandelin A (2004) - http://phylofoot.org/] is
another TFBS predictor that uses the JASPAR data set as a default
input. All of these programs will output a set of motifs (potential
binding sites for transcription factors), many of which will be in-
correct predictions. A difficult task, is reducing the number of out-
putted false positives, or optionally, finding a method to effectively
sift through the output an find the more confident results.

1.2 Description of Task

Researchers are motivated to find efficient and precise methods for
TFBS prediction, and I would like to motivate further that the anal-
ysis of such results needs an equally efficient method. Both MatIn-
spector and Consite provide web-based, interactive, output, but the
interaction is far from smooth (even with a fast internet connection,
submission and retrieval of results are slower then real-time) and
the display is limited. I would like to provide an offline solution to
view predicted TFBS.

A new solution should not only be able to provide the function-
alities that MatInspector and Consite’s visualizations provide, but
should be able to compare across several species and across mul-
tiple datasets, as well as being able to compare within a single
dataset. These techniques can greatly aid a user in finding more
confident results.

1.3 Contents

This paper is arranged in following manner:

Section 2, I mention related works, and other online imple-
mentations of TFBS viewers.

Section 3 talks about the goals of the projects, and how a so-
lution could be implemented.

Section 4 gets into greater detail the Prefuse implementation
strategy.

Section 5 gives examples of the use of the TFBS Viewer.

Section 6 to 8 conclude this paper with the strengths and
weaknesses of the TFBS Viewer approach and future work
that could be included.

2 RELATED WORK

MatInspector [Quandt K et al (1995) and Cartharius K et al. (2005)
- http://www.genomatix.de/] and Consite [Sandelin A (2004) -
http://phylofoot.org/] provide online visualization of their predicted
results (see figure 1 for matInspector view). The interaction is slow,
there exists no smooth filtering of results, and the options are lim-
ited. Finally, the sequence results tend to static, and comparison
across two or more species is sometimes not provided. This is par-
tially due to the online capabilities.

The MatInspector visualization is a static display, with a lim-
ited viewable range, using a focus plus context visualization. There
exists two images, one is a zoomed out display of the other. The
zoomed out display (the context display) is useless for viewing the
individual predicted motifs, because of clutter and thus occlusion.
It is therefore used as a navigation tool. The sliding window on
the zoomed out display can be moved horizontally, thus changing
the focus of the second window (the focus display). There is no
smooth transition for the window display, most probably due to
memory and speed constraints (the visualization is fully online).
The zoomed in display shows the individual motifs, as well as their
relative location on the DNA sequence. Each motif is designated
a color, although colors overlap when there are a lot (greater then
approx. 50) of motifs to view. Clicking on the individual motifs
will zoom to another link on the browser. The similarity score (see
Cartharius K et al 2005) is represented as the height if each individ-
ual motif.

Although MatInspector is online, and provides a simple display
of the motifs to a user, it lacks some very fundamental options. For
one, the color scheme is bright and confusing. Unless there are only
a few points (which would defeat the purpose of a visualization all

Figure 1: MatInspector introduction example. Included is an example
listing of motifs and a visualization of the sequence. Each semi-
circular item represents a motif. The bottom figure is a zoomed-out
display of the entire sequence.

together), the colors overlap and become misleading. The only col-
ormap is off screen. Using no colors might even be a better solution
then the one implemented. Also, the colormap is bright, and dis-
tracting. Secondly, there is no way to view the information within
each displayed motif at the same time as viewing the display. They
could have implemented an extension to the display with allows for
this option. Finally, there is no way to filter the results. This is un-
fortunate, because one application of the display is to help remove
unwanted (and false with greater certainty) motifs from results to
aid in further investigation.

One major drawback of the MatInspector view is that is does not
provide any option to compare multiple sequences together. This
option is, however, implemented in the Consite display (although
the number of sequences is limited to two). Consite provides the
user with some simple strategies to find significant results. One is
the sequence wide filter. This helps reduce the number of displayed
results (and the amount of clutter) that is visualized by the user.
Consite does provide a parallel display of the motif information (a
pop-up window is opened).

Although Consite’s visualization is superior to MatInspectors in
many respects, Consite lacks some other fundamental ideas. Indi-
vidual motifs can still not be filtered. The display of sequences (in
orientation and alignment) is final (once calculated, it is static and
cannot be changed). Consite also does not display some addition
information, include motif species or family type, nor does it read-
ily show the motif similarity score (as a degree of confidence, this
score can be very significant to a user).

rVista [Loots G. et al (2002) -
http://genome.lbl.gov/vista/rvista/submit.shtml] is another predic-
tor that provides a solution for multiple (equal to or greater then
2) sequence comparisons. However, rVista’s solution is very sim-
ple, and the visualization cannot be altered at all - the alignment is
also static. rVista has few options for filterering, but no dynamic
movement, and limited individual motif information.

Softberry [http://www.softberry.com/] and Match [
http://www.gene-regulation.com] provide TFBS predictions with-
out displays. Because of this fact, their results tend to be hard to
understand, and further data mining needs to be done on a case-by-
case basis. Analyzing each individual motif is a long (and arduous)
task.

Figure 2: Consite example. The line graph represents the conser-
vation level between the aligned sequences. Above are motifs. The
Model view shows additional information for a selected motif. Picture
copied from Sandelin A et al (2004)

3 TFBS VIEWER: INFORMATION VISUALIZATION

TFBS Viewer is a implementation of Information Visualization,
that takes XML sequences (with nodes TFBS predictions – mo-
tifs) as input, and then visualizes TFBS predictions using a parallel
coordinates system. For the remainder, this paper will refer to each
individual XML input file as a separate sequence, as it represents a
single individual’s DNA sequence. The implementation makes use
of the 1 dimensional properties of DNA sequences as a layout, for
a simple, symbolic representation of the motifs. Edges between the
sequences represent common motifs across multiple sequences.

Sequences can be moved around the layout, and any number
of sequences can be added or removed from the set (memory and
space permitting). This provides a dynamic, user defined, align-
ment tool. The whole system runs at a decent place, and does not
lag to inefficiency even when using large datasets.

TFBS Viewer also provides some simple, real-time, information
of motifs. Information of individual motifs can be retrieved and
highlighted. Users can also search through the list of families and
highlight these families.

3.1 Parallel Coordinates

Parallel coordinates [Wegman EJ 1990] is a method for a 2 dimen-
sional representation of high-dimensional data. The attributes are
listed on the horizontal axis (or vertical axis if rotated). A set of
edges from one attribute axis to another represent the individual
entries in the dataset.

TFBS Viewer can sequentially load any (limited by memory)
number of sequences into the display. Each file is read as an XML
database, and each individual node represents an individual motif
in the file. When two sequences are place side-by-side, all their
motifs with the same family are connected with a darkened edge,
while those that are farther away in proximity have lightly shaded
edges (implementation of a dynamic alignment).

The parallel coordinates system provides some excellent fea-
tures, that can be taken advantage of:

1. New attributes of a parallel coordinate system are easily added
to a visualization. In the TFBS Viewer, this means that
species, represented as a sequence, can be easily added to the
visualization. The other sequences do not have to be touched
or manipulated, nor do their locations on the display have to
be moved. The advantages of this is that sequences can be
added to the visualization without the user losing his sense
of direction in the other sequences. As a bonus, sequences
can be easily copied and compared against themselves. One
sequences, with a duplicated subsequence, can be placed side-
by-side, and compared. Optionally, one sequence can be com-
pared to two locations of another sequences (although the par-
allel coordinates limits the number of comparisons to two).

2. The best way to find significant motifs is to find multiple,
highly confident motifs together. The parallel coordinates sys-
tem conserves linear spatial properties of a sequence. For the
TFBS viewer, this means that if a pattern of motifs, with a
constant distance in-between, is found in multiple sequences,
a users confidence level for these motifs can rise significantly.
This also works for long distant sequences. A user could find
the presence of conserved patterns of motifs in multiple loca-
tions on a parallel sequence.

3. The number of attributes displayed on a parallel coordinate
system is limited only by the amount of available space ver-
tically. This implemented very well with the TFBS viewer.
Multiple sequences can be easily viewed (in my experience,
12 sequences was still comprehensive) without lose of infor-
mation displayed from clutter.

4. Simplicity, the parallel coordinates system is easy to under-
stand and check. The target user audience for TFBS Viewer
are users with a broad understanding of biology, but might
have only a little experience with graph theory. It would be
much desired to have a system that has a small learning curve.

3.2 Color-Brightness as Filter

Many visualization systems have color systems implemented.
These systems can be well implemented on small datasets, where
color can be easily associated with a discrete number of labels. It is
well implemented in the TFBS Viewer for a small number of motifs.
As the number gets larger, the significance of the colors fades. This
is immediately apparent in the MatInspector tool, where color be-
comes distracting. Some visualizations (such as the Consite) leave
color out all together when dealing with larger datasets.

I’ve implemented a darker coloring scheme for the motifs, so that
the color doesn’t get distracting, but is available if color is desired
for the implementation as a labeling device. As the dataset get into
the thousands, this labeling visualization becomes less useful, and
can be ignored.

As the mouse passes over edges, motifs and clicks on the fam-
ily references on the side (east) panel, the corresponding family of
motifs gets highlighted. Highlighted motifs and edges appear in
a bright color (magenta), a color that is significantly brighter the
the rest of the dull motifs and edges. It might have been desirable
to implement a ”prioritizer”; a method that increases the priority
(read: brightness) of a selected motif. This could be used to easily
save desirable motifs. Because of the number of dull colors used,
these prioritized motifs would be recognizable at first glance, for
any dataset.

The second implementation of brightness is implemented using
the edges between a pair of sequences. As the two nodes neighbor-
ing an edge get closer (and consequently, the edge becomes more

perpendicular to the sequences), the edge gets darker (become black
when it is fully perpendicular to the sequences). This becomes an
aid for pattern searches. If many such edges becoming black on
a single placement of the sequences, if means that there are many
conserved (and more confident results of) motifs between those two
sequences at that orientation.

3.3 Focus

Focus is another useful technique for larger datasets, to focus in
on important sections of a graph, while leaving other areas in the
background. This is an extremely useful tool for datasets that are
easily categorized.

The implementation of TFBS viewer has a focus animation op-
tion. If desired, an edge of the display can be double-clicked, and
the viewer with shift both sequences so that the edge is placed in the
middle of the display, and lies perpendicular to both sequences. The
transition has a slow-in-slow-out animation so that both sequences
can be kept in context.

The motivation for implementing this is two fold: a) if a candi-
date edge, i.e. an edge that the user thinks has a high confidence
value (determined empirically or otherwise), then it is nice to bring
this edge into the center of the screen. b) if there are other nearby
candidate motifs, each with conserved between the sequences, the
focus will put each of their edges nearly perpendicular to the two
sequences, thus highlighting them (see 3.2 Color-Brightness as fil-
ter). This functionality becomes a useful search tool.

3.4 Interactivity to Provide a Dynamic Alignment Tool

Interactivity is a powerful tool in Information Visualization, espe-
cially for large datasets, where confidence of a result is difficult to
show. A simple static display might not be enough to show enough
confidence in a result. Interactivity could solve this problem by
giving a user the ability to navigate and manipulate the data until an
ideal, or optimal representation is found.

Optimality in DNA tends to be found in small localities, rather
then as a whole sequence. Running an alignment tool that finds
global optimums might not be as desirable at a local alignment tool.
Therefore, we propose a solution that allows users to find their own
alignments, locally, that might be more similar to running a local
alignment search then the global alignment search.

This is similar to searching for the near-optimal set. Although
global optimal results are good useful, in practice, predicted TFBS
datasets tend to behave more towards many near-optimal solutions
that might be ”better” results then the most optimal. This is true
in many biological applications. For example, in the free energy
model to predict the 3D structure of proteins, the optimal solution
is many times computed, yet sometimes, is never seen in practices.
This might be because ”reaching” the optimal state might be very
difficult.

Since the presence of many near-optimal configurations is a def-
inite possibility, it would be very useful for a user to be able to nav-
igate freely through each configuration. This is possible through an
interactive environment that allows users to manipulate the number
of sequences to view, alter their ordering, and then slide sequences
of motifs horizontally. All of this can be done without the user los-
ing their sense of direction. Even when the program starts to lag
(for very large datasets), the program becomes slow, but still com-
prehensive.

4 HIGH-LEVEL IMPLEMENTATION

The majority of the TFBS Viewer was implemented in Java, us-
ing the Swing extension for interface design and organization, the

Prefuse visualization toolbox for data organization, and Perl scripts
to parse the data to XML format.

4.1 XML Dataset

HTML results were parsed using Perl scripts to make XML for-
mated datasets. The datasets were constructed with the attributes
described in Table 1.

Each of the attributes were used to develop a spatial layout that
conserved location of a motif relative to its sequence, and kept in-
dividual sequences separate.

Table 1: Motif Attributes

Attribute Description Usage

id Node ID number Ignored
start Motif start index X position of motif
end Motif end index Ignored
species Trans. Factor Species Ignored
family Motif Family Clustered for

highlighting
motif Motif name and variation Connected with

edges
desc Description of Ignored

Trans. Factor
matSim Similarity Score of motif Height of rendered

node
seq Binding Site sequence Ignored
filename Unique filename that Y positioning

motif was read from

4.2 Implementation of Prefuse

The Prefuse interactive information visualization [Heer J (2004)]
has several new classes, methods and functions. VisualItems rep-
resent the visual structures that are painted onscreen, this includes
Nodes, Graphs and Aggregated items. These VisualItems can be
manipulated and customized easily, for example their rendering
method can be extended or built separately. Each VisualItem has
several boolean attributes that can decide its state, including visibil-
ity, focused or highlighted. Edges, Nodes and Aggregate Items can
each be related to one another through appropriate function com-
mends. Finally, each VisualItem is associated with a corresponding
entity in the read graph.

The ItemRegistry is a repository for all the VisualItems, read
graphs and displays. The registry is passed amongst the displays
and actions performed, so that appropriate VisualItems and at-
tributes can be manipulated as the states change.

The ActionLists contain a list of actions to perform. Appropri-
ate actions include animation pacers, node and edge filters, display
layouts, display panning and zooming, etc. ActionLists can be ma-
nipulated through timing functions, so that they provide smooth an-
imation and visualizations.

ControlListeners are the interactive elements of an interface.
These include mouse and key listeners that pass VisualItems as well
as Mouse X and Y coordinates. They are important to any visual-
ization that involved interaction.

In the following sections, I will explain how the TFBS Viewer
differs from the standard or default implementation of Prefuse.

4.2.1 The SequenceItemRegistry class

The main implementation class of Prefuse is the ItemRegistry that
stores the XML graphs, VisualItems, and displays. This class was
extended to the SequenceItemRegistry class to include several other
important variables needed for the TFBS Viewer. Some of the in-
cluded features:

1. The order list contains the list of visible sequences, sorted by
the filename attribute. By reordering this list, and then recall-
ing the SequenceFilter and SequenceLayout action (described
later), the sequences would be reordered.

2. The filename list contains all the loaded filenames. Files re-
main in memory even if all of their motifs are invisible, or
removed. This allows for easy re-loading if needed. Unfor-
tunately, this also reduces the available memory for subse-
quently loaded files.

3. Offsets stores the X coordinates for the entire sequence, and
is loaded whenever the entire sequences if dragged to moved
in any way.

4. FilterColorMap stored the color map for each motif family
name. These colors are loaded when each node is painted.
New colors are assigned randomly.

4.2.2 Dataset to VisualItems

Each individual dataset can be individually loaded, and read via
the XMLGraphReader function. The newly created graph is con-
catenated to the existing graph (which resides in the ItemRegistry).
Each item in the newly created graph is given the attribute of the
filename. I’ve not allowed the same filename to be loaded more
then once, which would create conflicting nodes attributes. Instead,
included sets of motifs can be duplicated using the CopySequence
ActionList.

Edges are automatically added to the graph using the Sequence-
Filter action. Edges are not necessary to be included in the XML
file. Although they are not ignored, thus included Edges in the
XML file should only be included if a user desires to include a
special relationship between some motifs.

No Aggragate Items were used.

4.2.3 ActionLists

There are several new Actions include in this implementation of
TFBS viewer. Some of the actions perform necessary tasks, such as
the SequenceFilter that creates NodeItem representations of each
of the motifs, and EdgeItem representations for each correspond-
ing relationship. There is an AddSequence action that adds a new
file to the graph. CopySequence and RemoveSequence respectively
duplicated and remove existing sequences.

The animate actionlist is for animations that were included. The
animations are all paced using the SlowInSlowOut pacer for smooth
transitions. The update actionlist is a condensed repaint ActionList
that does not create or update the number of NodeItem and EdgeIt-
ems. Instead it concentrates on color updates and repaint actions.
Because the number of actions were minimized as much as pos-
sible, the update ActionList should be used almost exclusively for
animation repainting.

4.3 Interface

This TFBS viewer demo uses the Java.swing toolbox for window
implementation. There are three main divisions of the main JFrame:
the main Display, the Control Panel and the Filter Panel.

The main display, named Display, displays the VisualItems in
their current state. This Frame contains MouseListeners that listen
and record where the mouse pointed is located. The HighlightSe-
quence ControlListener waits for the mouse to hover over a Visu-
alItem to highlight it. The VisualItem’s color is highlighted, and
the corresponding motif family is selected in the Filter Panel (see
after).

If an EdgeItem is double clicked on, an animation is triggered
that slides both Nodes neighboring the EdgeItem to the center of the
display. The corresponding sequences slide with the NodeItems. If
a NodeItem (a motif) is double clicked on, a new window pups up,
that displays the motif’s attributes.

Finally, a SequenceDragControl listens for a NodeItem drag.
When a drag is recorded, then the entire sequence slides horizon-
tally with the mouse.

The colors of motifs are determined randomly at creation. The
darkness of an EdgeItem is determined depending on the neighbor-
ing NodeItem’s X proximity. This is done as often as possible, so as
to make dragged and animated sequences’ EdgeItems change color
are common motifs pass by each other.

The Control Panel controls several user trigger actions, including
adding files, copying sequences and removing sequences. It also
controls the ordering of sequences on the display. This ordering
can be changed by using the MoveUp and MoveDown JButtons.
Although there is no animation for the order change transitions,
Users should not be confused by the new ordering, this is because
all of the sequences were already on the screen.

The Filter Panel is a color changing panel that displays a listing
of all the included motif family names. These family names can
be selected to view the family highlighted on the display. Alterna-
tively, when the mouse is passed over a sequence, its corresponding
family is selected in the Filter Panel. The color of the family is
displayed as a background of the Filter Panel.

5 RESULTS

There are two examples shown here of usage of the TFBS viewer
on two datasets. It will provide a step by step usage of the various
panels and options.

5.1 Test Data

We are using two example datasets. The raw DNA for each of
the human (hg17 assembly), chimpanzee(assembly), mouse (),
rat (assembly) and dog (assembly July 2004) sequences were ex-
tracted from UCSC’s genome browser [Kent WJ et al. (2002)
- http://genome.ucsc.edu/]. Predicted motifs were obtained us-
ing MatInspector (their algorithm for motif prediction works very
well). The first dataset uses sequences of size approximately
1000bp. The second uses sequences of size approximately 6700bp.

The raw HTML files were parsed into XML files using a Perl
parser script.

5.2 Example 1: Loading and Altering the Sequences

Figure 3 shows the initial setup for the Sequences. We see
that 4 sequences have already been loaded using the argument:
.̈/data/results/human chr7.xml ./data/results/chimp chr7.xml
./data/results/mouse chr7.xml ./data/results/rat chr7.xml¨.
We can add an additional file using the add file button. By
adding the file ./data/results/dog chr7.xml we obtain the results
as shown in figure 4.

We can play around by dragging the sequences. We have copied
the human sequence using the JButton Copy, and moved it directly
below the chimpanzee sequence (figure 5). One can move a selected
sequence by using the JButtons Move Up and Move Down. We can

immediately notice that the chimpanzee and human sequences are
very common. There are several nodes that match up perfectly.

Now we remove the mouse, rat and dog sequences using the
JButton Remove. We are left with two copies of the human se-
quence, and one copy of the chimpanzee sequences. For a compar-
ison, we can observe that the human and chimpanzee sequences are
not that similar when they are not perfectly aligned. Lets move the
human sequence to the left by dragging the sequences. At once, we
can see that many black edges fade away to grey with the move-
ment.

If we’d like to perform further analysis of each individual motif,
we can double click on it to bring up a feedback window. This
window displays most of the attributes on the motif (see figure
7). We can also search through the alignment of the human and
chimpanzee sequences by double clicking and centering individual
edges. Such as what we did for the highlighted edge in figure 8.

5.3 Example 2: Finding Patterns

With almost a thousand nodes, this datasets of figure 9 and 10 are
quite large. We can still find conserved groupings of motifs. This
was performed on by dragging the mouse sequence of figure 9 to
the right to get to figure 10. We see right away large darkened sets
of edges. This represents groups of conserved patterns that might
be important. The large the set of nodes, the more confident we
become. The height of each individual motif represents the motif
similarity score. If the motifs are also tall, we have found a set of
interesting sites.

6 STRENGTHS

Although there already exists some visualizations for TFBS
datasets, they are very limited in their ability to provide two excel-
lent visualization techniques: interactivity and multiple sequence
alignments.

Multiple sequence alignments is the ability of a user to place
multiple sequences side-by-side, and view where they are able to
match up (where they are conserved between themselves). This
technique, applied to TFBS prediction datasets, was used to view
several distantly related sequences. This is a technique that has
aided comparative geneticists. This implementation of TFBS
viewer allows users to visualize several sequences side-by-side,
without much clutter in between these sequences.

An interactive environment, including the ability to scan, move
and slide sequences around each other is a big help. With real-
time feed back on the alignment, this tool can help users quickly
find alternatively conserved regions. The ability to copy sequences,
reorder and add new files allows users non-stop customizability.

The real-time feedback for conserved regions works very well,
and doesn’t cause very much lag. Users don’t have to worry very
much about lag producing false or ghost results.

The real-time highlighting tool gives fast, quick, feedback for
the motif’s family. Further information can be extracted by double-
clicking on the desired motif. This produces a new window, that
doesn’t need to be closed. That information will stay visible for as
long as desired.

For large datasets, I have often found that color can either be
used sparingly, or not at all. When color is relied upon, I find that
it becomes more distracting then helpful. I’m fairly content with
the color scheme used for the TFBS Viewer. The dull colors are
forgotten ignored until a color legend is needed. Whereupon the
color can actually become useful. The magenta highlights really
stand out from the rest of the visualization, since they are the single
most important and only bright object on the screen. I count the
color as a success.

Although on first observation, the dataset looks very occluded.
This is not always the case, and the important information (mainly
the darkened EdgeItems) are easily seen. I have also avoided the
use of text on the screen, which would add unnecessary clutter to
the already overloaded display.

7 WEAKNESSES

There are still some minor (major?) bugs that have not been fixed.
The ItemComparator does not compare based on whether an Item
is highlighted or not, despite my best efforts to make it so. Sec-
ondly, highlighting overrides the visual visible property of edges, so
that edges that run beyond adjacent parallel coordinates (and which
correctly set to invisible by the SequenceFilter) are suddenly high-
lighted incorrectly.

Clutter is the main weakness of the TFBS Viewer. Because of the
large datasets used, there are few good and successful approaches
to this problem. The issue was place in the background for most
of the project, as a strong implementation to form a comparison
across sequences was deemed more important. Clutter should be
addressed, however, and is a necessary obstacle to overcome if in-
dividual motif confidence levels need to be investigated.

Another weakness becomes evident if one wanted to include
huge datasets. The reason for this is that Prefuse limits the number
of nodes to 10′000. Although this seems like a large number, there
were greater then 3′000 nodes in example on figure 9 and figure 10.

8 FUTURE WORK

8.1 Edge Filtering

Although this TFBS Viewer contains a load of helpful features,
there are still many more that could be implemented. Clutter con-
stantly remains a weakness in all large datasets. With motifs, there
are a hundred and one ways to filter out data. It would have been
great to implement them all, but due to time constraints, there were
only a limited number that could be implemented.

The ability to filter out completely the edges that are long dis-
tance (instead of simply reducing their brightness) could be a strong
aid for some users. This could have been implemented using a slid-
ing bar. Edges are filtered out if they exceed the bar’s distance.

8.2 Motif Occlusion

Motif as often occluded, since predicted sites tend to be cluster to-
gether. This can be overcome in several ways. The first suggestion
would be to change the NodeRendering function to a value that
makes the motifs less occluded. If the ItemComparator function is
changed, it would not reduce the number of occluded motifs, but
simply present the most significant motifs on top.

Node occlusion could have been reduced using a simple zoom
function, a spacing function that multiplies the X position by a float-
ing point factor ¿ 1 for a zoom-in, and ¡ 1 for a zoom-out. This, un-
fortunately, reduces the viewable space. I have tried to avoid doing
this.

A slider bar could be used to control the filtering of motifs based
on their similarity score. This would be a simple solution that relies
on the user to pick an appropriate filter value.

Finally, the ability to select and remember edges and motifs
could be significant. This could easily be implemented using
MouseClickListener function, and store the list the ItemRegistry.

With the addition of several new filters, an option on the Control
Panel turn the filters on and off should be implemented, for sanity’s
sake.

8.3 ToolTip controls

Further and readily available information could be returned using a
tooltip control. This avoids the problem of adding additional text to
the display, but gives users an added feedback control. The infor-
mation displayed in the ToolTip could be editable, thereby reducing
some of the clutter.

8.4 Aggregation

Although aggregation was not addressed in this paper, it could be
a very helpful tool in reducing the clutter of motifs and as an aid
in finding patterns. I leave this option open to interpretation, as I
have little knowledge of how and where the user audience would
understand the usage of aggregation.

8.5 Online Implementation

Most of the TFBS predictors are found online. Adding this imple-
mentation as an applet to be viewed by user online could be a huge
benefit. Although this ability might be cumbersome to internet ser-
vices, it could be widely appreciated by the global community. The
implementation could also take advantage of of public online ser-
vices, such as readily available Logo graphics of motifs, or down-
load individual motifs from the TRANSFAC database.

8.6 User Study

Although this project is still far from being completed, it is at a
point where feedback from the user target audience should be re-
trieved. Many trivial qualities for a Computer Scientist might be
difficult concepts for some of the users.

Getting user feedback might dictate the future direction of the
study.

9 CONCLUSION

Although there is a lot of biological data available on transcrip-
tion factors, their DNA bindings sites, and their applications to
medicine, microbiology and biochemistry, there still exists many
of the hard, and probably even some easy questions to tackle. Re-
searchers that tend to scan large sets of DNA are constantly frus-
trated by the limitations imposed by traditional software.

Several researches have dedicated many hours to scanning
through large TFBS prediction datasets looking for anomalies,
hoping that their understanding can lead to another breakthrough.
Much of the researcher’s time could be reduced if they have a re-
liable search tool (many of these researchers tend to rely more on
their own hands and eyes, then on algorithms that find optimal so-
lutions).

TFBS Viewer can provide a simple browsing tool so that research
time can be spent in a more efficient manner. Although TFBS
Viewer can be significantly improved upon, to search through more
specialized datasets, it should aid research for general datasets.

10 BIBLIOGRAPHY

1. Kimura, M (1968). Evolutionary rate at molecular level. Na-
ture, 217: 624-626.

2. Kimura, M (1986). The neutral theory of molecular evolution.
Cambridge University Press.

3. Ohta, T (1992). The nearly neutral theory of molecular evo-
lution. Annual Review of Ecology and Systematics, 23: 263-
286.

4. Ohta, T. (2002). Near-neutrality in evolution of genes and
gene regulation. Proceedings of the National Academy of Sci-
ences, 99: 16134-16137.

5. Sandelin A, Alkema W, Engstrom P, Wasserman WW,
Lenhard B (2004). JASPAR: an open-access database for eu-
karyotic transcription factor binding profiles. Nucleic Acids
Res 32(1):D91-4.

6. Quandt K, Frech K, Karas H, Wingender E, Werner T (1995).
MatInd and MatInspector: new fast and versatile tools for
detection of consensus matches in nucleotide sequence data.
Nucleic Acids Res. Dec 11;23(23):4878-84.

7. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M,
Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005).
MatInspector and beyond: promoter analysis based on tran-
scription factor binding sites. Bioinformatics 21, 2933-42

8. Sandelin A,Wasserman WW,Lenhard B (2004). ConSite:
web-based prediction of regulatory elements using cross-
species comparison. Nucleic Acids Res 32W249-52.

9. Loots G and Ovcharenko I (2004). rVista 2.0: evolutionary
analysis of transcription factor binding sites.. Nucleic Acids
Research, 32(Web Server Issue), W217-W221.

10. Wegman EJ (1990). Hyperdimensional Data Analysis Using
Parallel Coordinates. Journal of the American Statistical As-
sociation, Vol. 85, No. 411., pp. 664-675

11. Heer J, Card SK, and Landay JA (2005). Prefuse: a toolkit for
interactive information visualization. In CHI 2005, Human
Factors in Computing Systems.

12. Heer J (2004). Prefuse: a software framework for interac-
tive information visualization. Masters of Science, Computer
Science Division, University of California, Berkeley.

13. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH,
Zahler AM, and Haussler D (2002). The Human Genome
Browser at UCSC. Genome Res. 12(6), 996-1006.

Figure 3: Initial setup of Sequences

Figure 4: Add new file .̈/data/results/dog chr7.xml¨

Figure 5: Copied the Human sequence and reordered the sequences

Figure 6: Removed all but the human and chimp sequences, moved sequences

Figure 7: Brought up feedback for motif V$PRE 01

Figure 8: Centered sequences around highlighted motif

Figure 9: Large human and mouse dataset

Figure 10: New arrangement of sequences to get different matches

