TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility

Tamara Munzner
Univ. British Columbia

François Guimbretière
Univ. Maryland College Park

Serdar Taşiran
Koç University

Li Zhang, Yunhong Zhou
Hewlett Packard Systems Research Center
Tree comparison

- Active area: hierarchy visualization
 - previous work: browsing
 - comparison still open problem

- Bioinformatics application
 - phylogenetic trees reconstructed from DNA
Inferring species relationships
Phylogenetic tree
Tree of Life: 10M species

Comparing trees: current practice

Will Fischer, postdoc with David Hillis at UT-Austin
Biologists’ requirements

• Reliable detection of structural differences
 – rapid identification of interesting spots
• Analysis of differences in context
 – mostly side by side comparison
• Manipulation of increasingly larger trees
• Support for multiple platforms
TreeJuxtaposer contributions

• Interactive tree comparison system
 – automatic detection of structural differences
 • sub-quadratic preprocessing
 – efficient Focus+Context navigation and layout
 • merge overview and detail in single view
 – guaranteed visibility under extreme distortion

• Scalable
 – dataset size: handles 280K – 500K nodes
 – display size: handles 3800x2400 display
TreeJuxtaposser video

• Platforms shown
 – java 1.4, GL4Java 2.7 bindings for OpenGL
 – Windows
 • 2.4 GHz P3, nVidia Quadro4 700XGL
 • 1.1GB java heap
 • window sizes 1280x1024, 3800x2400
 – Linux
 • 3.1 GHz P4, nVidia GeForce FX 5800 Ultra
 • 1.7GB java heap
 • window size 800x600
Outline

- Application domain: evolutionary trees
- Demonstration
- Computing structural differences
- Guaranteed visibility of marked areas
- Results and conclusions
Comparing tree

- Rayfinned fish
 - Salamander
 - Frog
 - Mammal
 - Bird
 - Crocodile
 - Lizard
 - Snake
 - Turtle
 - Lungfish

- Rayfinned fish
 - Lungfish
 - Salamander
 - Frog
 - Turtle
 - Snake
 - Lizard
 - Crocodile
 - Mammal
 - Bird
Matching leaf nodes

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodil
 - lizard
 - snake
 - turtle
 - lungfish

- rayfinned fish
 - lungfish
 - salamander
 - frog
 - turtle
 - snake
 - crocodil
 - mammal
 - bird
Matching leaf nodes

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodile
 - lizard
 - snake
 - turtle
 - lungfish

- rayfinned fish
 - lungfish
 - frog
 - turtle
 - snake
 - crocodiles
 - mammal
 - bird
Matching leaf nodes

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodide
 - lizard
 - snake
 - turtle
 - lungfish

- rayfinned fish
 - lungfish
 - salamander
 - frog
 - turtle
 - snake
 - crocodide
 - mammal
 - bird
Matching interior nodes

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodile
 - lizard
 - snake
 - turtle
 - lungfish

- rayfinned fish
 - lungfish
 - salamander
 - frog
 - turtle
 - snake
 - crocodile
 - mammal
 - bird
Matching interior nodes

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodile
 - lizard
 - snake
 - turtle
 - lungfish
- rayfinned fish
 - lungfish
 - salamander
 - frog
 - turtle
 - snake
 - lizard
 - crocodile
 - mammal
 - bird
Matching interior nodes

- rayfinned fish
- salamander
- frog
- mammal
- bird
- crocodile
- lizard
- snake
- turtle
- lungfish

- rayfinned fish
- lungfish
- salamander
- frog
- turtle
- snake
- lizard
- crocodile
- bird
- mammal
Matching interior nodes

- rayfinned fish
 - salamander
 - frog
 - mammal
 - bird
 - crocodile
 - lizard
 - snake
 - turtle
 - lungfish

- rayfinned fish
 - lungfish
 - salamander
 - frog
 - turtle
 - snake
 - lizard
 - crocodile
 - mammal
 - bird
Previous work

• Tree comparison
 – RF distance [Robinson and Foulds 81]
 – perfect node matching [Day 85]
 – creation/deletion [Chi and Card 99]
 – leaves only [Graham and Kennedy 01]
Similarity score: \(S(m,n) \)

\[L(m) = \{E, F\} \]
\[L(n) = \{D, E, F\} \]

\[
S(m,n) = \frac{|L(m) \cap L(n)|}{|L(m) \cup L(n)|} = \frac{|\{E, F\}|}{|\{D, E, F\}|} = \frac{2}{3}
\]
Best corresponding node

\[T_1 \]

\[T_2 \]

\[BCN(m) = n \]

- \(BCN(m) = \arg\max_{v \in T_2} (S(m, v)) \)
 - computable in \(O(n \log^2 n) \)
 - linked highlighting

\[m \]
Marking structural differences

- Nodes for which $S(v, BCN(v)) \neq 1$
 - Matches intuition
Outline

• Application domain: evolutionary trees
• Demonstration
• Computing structural differences
• Guaranteed visibility of marked areas
• Results and conclusions
Guaranteed mark visibility
Marks

- Region of interest shown with color highlight
 - structural difference
 - search results
 - user-specified

- Purpose
 - guide navigation
 - provide landmarks
 - subtree contiguity check
Guaranteed visibility of marks

• How can a mark disappear?
Guaranteed visibility of marks

- How can a mark disappear?
 - moving outside the frustum
Guaranteed visibility of marks

• How can a mark disappear?
 – moving outside the frustum

• Solutions
 – choose global Focus+Context navigation
 • “tacked down” borders
Focus+Context previous work

- combine overview and detail into single view
- Focus+Context
 - large tree browsing
 - Cone Trees [Robertson et al 91]
 - Hyperbolic Trees [Lamping et al], H3 [Munzner 97]
 - SpaceTree [Plaisant et al 02]
 - DOI Trees [Card and Nation 02]
 - global
 - Document Lens [Robertson and Mackinlay 93]
 - Rubber Sheets [Sarkar et al 93]
- our contribution
 - scalability, guaranteed visibility
Guaranteed visibility of marks

• How can a mark disappear?
 – moving outside the frustum

• Solutions
 – choose global Focus+Context navigation
 • “tacked down” borders
Guaranteed visibility of marks

• How can a mark disappear?
 – moving outside the frustum
 – occlusion

• Solutions
 – choose global Focus+Context navigation
 • “tacked down” borders
Guaranteed visibility of marks

• How can a mark disappear?
 – moving outside the frustum
 – occlusion

• Solutions
 – choose global Focus+Context navigation
 • “tacked down” borders
 – choose 2D layout
Guaranteed visibility of marks

• How can a mark disappear?
 – moving outside the frustum
 – occlusion
 – culling at subpixel sizes

• Solutions
 – choose global Focus+Context navigation
 • “tacked down” borders
 – choose 2D layout
Guaranteed visibility of marks

• How can a mark disappear?
 – moving outside the frustum
 – occlusion
 – culling at subpixel sizes

• Solutions
 – choose global Focus+Context navigation
 • “tacked down” borders
 – choose 2D layout
 – develop efficient check for marks when culling
Preserving marks while culling

• Show mark at unculled node
Preserving marks while culling

- Show mark at unculled node
Mark preservation strategies

- Compress large subtree to small spatial area
User selects nodes $[135,199995]$

- Propagation: cost depends on total nodes
- Precomputation: cost depends on visible nodes
Marks and linked highlighting

• Also check for linked marks from other tree
 – check if best match for node is marked
 • up to $O(n)$ to look up each node in range
 – intersect node ranges between trees
 • reduces to point in polygon test, $O(\log^2 n)$
Efficient marking detection

- Intersecting ranges between trees
 - Query in $O(\log^2 n)$
Storing topological ranges

• At each node, store range of subtree beneath
 – range stored doesn’t match spatial range needed

![Diagram showing 500x500 pixels and 1x1 pixel with 10K nodes]
Storing spatial ranges

• At each box, store range of objects inside
Spatial range solution

- Recursive spatial subdivision
 - quadtree
 - store range of objects enclosed for each cell
 - quick check: spatial range vs. selection range

- Extending quadtrees to Focus+Context
 - quadtree cells also “painted on rubber sheet”
 - efficient $O(\log n)$ update when stretch/shrink
 - details in paper
Rendering infrastructure

• **Focus+Context QuadTree**
 – Fixed mapping between nodes and quad cell
 • Sparse cell instantiation
 – Split boundary relative to the node parent
 • Hierarchical propagation of deformation
 Guaranteed visibility previous work

• Visibility of abstract information
 – Effective view navigation [Furnas 97]
 – Critical zones [Jul and Furnas 98]
Outline

- Application domain: evolutionary trees
- Demonstration
- Computing structural differences
- Guaranteed visibility of marked areas
- Results and conclusions
Difference computation

- Powerful and totally automatic
 - leads users to important locations
 - efficient algorithms: 7s for 2x140K nodes
 - matches intuition
 • UT-Austin Biology Lab, several others

- Challenges
 - memory footprint
 - handling weighted edges
Guaranteed visibility

• Relief from exhaustive exploration
 – missed marks lead to false conclusions
 – hard to determine completion
 – tedious, error-prone

• Compelling reason for Focus+Context
 – controversy: does distortion help or hurt?
 – strong rationale for comparison
Guaranteed visibility challenges

• Integration with progressive rendering
 – might lose context during motion
 – need several seeds for rendering queue
 • focus point
 • marked items
 – up to empirical cutoff, no guarantees
• Constraint to fit everything in frustum
 – instead could show indirectly
Future Work

• Adoption
 – open-source release
 – tighter integration with biology tools
 – broad range of application domains

• Detectability vs. visibility
 – display resolution, surrounding colors

• Extend difference computation
 – weighted trees
 – graphs
Conclusion

• First interactive tree comparison system
 – automatic structural difference computation
 – guaranteed visibility of marked areas

• Scalable to large datasets
 – 250,000 to 500,000 total nodes
 – all preprocessing subquadratic
 – all realtime rendering sublinear

• Techniques broadly applicable
 – not limited to biological trees
Acknowledgments

• Biologists
 – David Hillis, Bob Jensen, Will Fischer, Derrick Zwickl
• Computer scientists
 – Nina Amenta, Katherine St. John
• Partial funding
 – NSF/DEB-0121682
• Talk preparation
 – Mary Czerwinski, Pat Hanrahan, George Robertson, Chris Stolte, Diane Tang, Gina Venolia