High Dimensional Visualization

By
Mingyue Tan
Mar10, 2004
High Dimensional Data

High-D data:
- ungraspable to a human’s mind

What does a 10-D space look like?

We need effective multi-D visualization techniques
Paper Reviewed

- Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates, Eser Kandogan, Proc. KDD 2001

Dataset

- **Car**
 - contains car specs (eg. mpg, cylinders, weight, acceleration, displacement, type(origin), horsepower, year, etc)
 - type: American, Japanese, & European
Dimensional Anchors (DA)

Dimensional Anchor:
- Attempt to unify many different multi-var visualizations
- Uses of 9 DA parameters
Base Visualizations

- Scatter Plot
- Parallel Coordinates
- Survey Plot
- Radviz spring visualization
Parallel Coordinates

- Point -> line
- \((0,1,-1,2)=\)
Base Visualizations

- Scatter Plot
- Parallel Coordinates
- Survey Plot
- Radviz spring visualization
Parameters of DA

- Nine parameters are selected to describe the graphics properties of each DA:
 - p1: size of the scatter plot points
 - p2: length of the perpendicular lines extending from individual anchorpoints in a scatter plot
 - p3: length of the lines connecting scatter plot points that are associated with the same data point
 - p4: width of the rectangle in a survey plot
 - p5: length of the parallel coordinate lines
 - p6: blocking factor for the parallel coordinate lines
 - p7: size of the radviz plot point
 - p8: length of the “spring” lines extending from individual anchorpoints of a radviz plot
 - p9: the zoom factor for the “spring” constant K
Basic Single DA

- Dimension – miles per gallon
- Data values are mapped to the axis
- Mapped data points - *anchorpoints*, represent the coord values (points along a DA)
- Lines extended from anchorpoints
Two-DA scatter plot

DA scatter plot using two DAs

- Perpendicular lines extending outward from the anchor points
- If they meet, plot the point at the intersection

- p_1: size of the scatter plot points
- p_2: length of the perpendicular lines extending from individual anchor points in a scatter plot
- p_3: length of the lines connecting scatter plot points that are associated with the same data point

$$P = (0.8, .2, 0, 0, 0, 0, 0, 0, 0, 0)$$
Three DAs

\[P = (0.6, 0, 0, 0, 0, 0, 0, 0, 0) \]

\[P = (0.6, 0, 1.0, 0, 0, 0, 0, 0, 0) \]

P3: length of lines connecting all displayed points associated with one real data point (record)
Seven DA Survey Plot

- 7 vertical DAs in a row
- Rectangle extending from an anchor point
 - size is based on the dimensional value
 - eg. Type - discrete value
 - red < green < purple
CCCViz - Color Correlated Column

- Does a dimension (gray scales) correlate with a particular classification dimension (color scale)?
- Correlation is seen in mpg, cylinders etc.
- p4: width of the rectangle in a survey plot

CCCViz DAs with $P = (0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0)$
DAAs in PC configuration

- Line from one DA anchorpoint is drawn to another
 - length of these connecting lines is controlled by $p5$.
 - $p5 = 1.0$, fully connected, every anchorpoint connects to all the other $(N-1)$ anchorpoints

- $P6$ controls how many DAs a $p5$ connecting line can cross
 - $p6 = 0$, traditional PC

$P = (0, 0, 0, 0, 1.0, 1.0, 0, 0, 0, 0)$
DAs in Regular Polygon

Figure 15 DAs in a regular polygon $P = (0, 0, 0, 0, 1.0, 0, 0, 0, 0)$ Mesh Plot
Intro. to RadViz Spring Force

- a radial visualization
- One spring for each dimension.
- One end attached to perimeter point. The other end attached to a data point.
- Each data point is displayed where the sum of the spring forces equals 0.
DAs RadViz

Original Radviz – 3 overlapping points
 Limitation: data points with different values can overlap

DAs spread polygon
 \(P = (0, 0, 0, 0, 0, 0, .5, 1.0, .5) \)
DA layout

✓ Parameters - Done!

☐ Layout

- DAs can be arranged with any arbitrary size, shape or position
- Permits a large variety of visualization designs

Figure 20 Survey Plot parameters with curved DAs
Combinations of Visualizations

- Can we combine features of two (or more) visualizations?

- Combination of Parallel Coordinates and Radviz
Visualization Space

- Nine parameters define the size of our visualization space as \mathbb{R}^9
- Include the geometry of the DAs, assuming 3 parameters are used to define the geometry
- The size of our visualization space is \mathbb{R}^{12}
- “Grand Tour” through visualization space is possible
- New visualizations can be created during a tour
Evaluation

Strong Points
😊 Idea
😊 Many examples of visualizations with real data

Weak Points
😔 Not accessible
😔 Short explanation of examples
😔 Lack of examples for some statement
😔 No implementation details
Where are we

✓ Dimensional Anchors

➢ Star Coordinates
 - a new interactive multidimensional technique
 - helpful in visualizing multi-dimensional clusters, trends, and outliers

➢ StarClass - Interactive Visual Classification Using Star Coordinates
Star Coordinates

- Each dimension shown as an axis
- Data value in each dimension is represented as a vector.
- Data points are scaled to the length of the axis
 - min mapping to origin
 - max mapping to the end
Star Coordinates Contd

Cartesian

\[P = (v_1, v_2) \]

Star Coordinates

\[P = (v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8) \]

Mapping:
- Items → dots
- \(\Sigma \) attribute vectors → position
Interaction Features

- **Scaling**
 - allows user to change the length of an axis
 - increases or decrease the contribution of a data column

- **Rotation**
 - changes the direction of the unit vector of an axis
 - makes a particular data column more or less correlated with the other columns

- **Marking**
 - selects individual points or all points within a rectangular area and paints them in color
 - makes points easy to follow in the subsequent transformations
Interaction Features

- **Range Selection**
 - select value ranges on one or more axes, mark and paint them
 - allows users to understand the distribution of particular data value ranges in current layout

- **Histogram**
 - provides data distribution for each dimension

- **Footprints**
 - leave marks of data points on the trail for recent transformations
Applications - Cluster Analysis

- Playing with the "cars" dataset
 - scaling, rotating, & turning off some coordinates
- Four major clusters in the data discovered
Applications - Cluster Analysis

- Scaling the “origin” coordinate moves only the top two clusters - (JP & Euro)
- Down-scaling the origin - these two clusters join one of the other clusters (American-made cars of similar specs)
- Result: two clusters

Low weight, displacement, high acceleration cars
SC - useful in visualizing clusters

- Within few minutes users can identify how the data is clustered
- Gain an understanding of the basic characteristics of these clusters
Multi-factor Analysis

- Dataset - “Places”
 - ratings wrt climate, transportation, housing, education, arts, recreation, crime, health-care, and economics

- Important desirable factors pulled together in one direction and neg. undesirable factors in the opposite
Mutli-factor Analysis con’t

- Desirable factors:
 - recreation, art, & education
 - climate (most)
- Undesirable factor:
 - crime

What can you conclude about NY and SF?
- NY – outlier
- SF – comparable arts, etc, but better climate and lower crime
Multi-factor Analysis contd

- Scale up transportation - other cities beat SF in the combined measure
Evaluation of SC in Multi-factor Analysis

😊 Exact individual contributions of these factors are not immediately clear

😊 The visualization provides users with an overview of how a number of factors affect the overall decision making
Evaluation

Strong Points

😊 idea
😊 many concrete examples with full explanations

Weak points

😊 ugly figures (undistinguishable)
Where we are

✓ Dimensional Anchors

✓ Star Coordinates
 - a new interactive multi-D visualization tech.

- StarClass - Interactive Visual Classification Using Star Coordinates
Classification

- Each object in a dataset belongs to exactly one class among a set of classes.
- Training set data: labeled (class known)
- Build model based on training set
- Classification: use the model to assign a class to each object in the testing set.
Classification Method

- Decision trees

![Decision Tree Diagram]

- Age > 25
- Car_type = sport car
- Class 1
- Class 2
- Class 3
Visual-base DT Construction

- Visual Classification
 - projecting
 - painting
 - region can be re-projected
 - recursively define a decision tree.
 - each project correspond to a node in decision tree
 - Majority class at leaf node determines class assignment

 (the class with the most number of objects mapping to a terminal region is the "expected class")
Evaluation of the system

Good

😊 Makes use of human judgment and guides the classification process
😊 Good accuracy
😊 Increase in user’s understanding of the data

Bad

🤔 expertise required?
Evaluation of the Paper

Good
- 👍 Ideas
- 👍 Accessible
- 🤓 Concrete examples

Bad
- 😞 No implementation discussed
Summary

- **Dimensional Anchor**
 - unify visualization techniques

- **Star Coordinate**
 - new interactive visualization techniques
 - Visualizing clusters and outliers

- **StarClass**
 - interactive classification using star coordinate
Reference

- http://graphics.cs.ucdavis.edu/~steoh/research/classification/SDM03.ppt