High Dimensional Visualization

By Mingyue Tan
Mar10, 2004

We need effective multi-D visualization techniques.

Paper Reviewed

- Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates, Eser Kandogan, Proc. KDD 2001

Dataset

- Car
 - contains car specs (eg. mpg, cylinders, weight, acceleration, displacement, type(origin), horsepower, year, etc)
 - type: American, Japanese, & European

Dimensional Anchors (DA)

Dimensional Anchor:
- Attempt to unify many different multi-var visualizations
- Uses of 9 DA parameters

Base Visualizations

- Scatter Plot
- Parallel Coordinates
- Survey Plot
- Radviz spring visualization
Parallel Coordinates
- Point -> line
- $P = (0,1,-1,2)$

Base Visualizations
- Scatter Plot
- Parallel Coordinates
- Survey Plot
- Radviz spring visualization

Parameters of DA
- Nine parameters are selected to describe the graphics properties of each DA:
 - p_1: size of the scatter plot points
 - p_2: length of the perpendicular lines extending from individual anchor points in a scatter plot
 - p_3: length of the lines connecting scatter plot points that are associated with the same data point
 - p_4: width of the rectangle in a survey plot
 - p_5: length of the parallel coordinate lines
 - p_6: blocking factor for the parallel coordinate lines
 - p_7: size of the radviz plot point
 - p_8: length of the "spring" lines extending from individual anchor points of a radviz plot
 - p_9: the zoom factor for the "spring" constant K

Basic Single DA
- Dimension – miles per gallon
- Data values are mapped to the axis
- Mapped data points - anchor points, represent the coord values/points along a DA
- Lines extended from anchor points

Two-DA scatter plot
- DA scatter plot using two DAs
 - Perpendicular lines extending outward from the anchor points
 - If they meet, plot the point at the intersection
 - p_1: size of the scatter plot points
 - p_2: length of the perpendicular lines extending from individual anchor points in a scatter plot
 - p_3: length of the lines connecting scatter plot points that are associated with the same data point

Three DAs
- $P = (0.8,0,0,0,0,0,0,0,0)$
- $P = (0.6,0,0,0,0,0,0,0,0)$
- $P = (0.6,0,1.0,0,0,0,0,0,0,0)$
- P_3: length of lines connecting all displayed points associated with one real data point/record
Seven DA Survey Plot

- 7 vertical DAs in a row
- Rectangle extending from an anchor point
- Size is based on the dimensional value
- Eg. Type: discrete value
- Red < green < purple

CCCViz - Color Correlated Column

- Does a dimension (gray scales) correlate with a particular classification dimension (color scale)?
- Correlation is seen in mpg, cylinders etc.
- p4: width of the rectangle in a survey plot

DAs in PC configuration

- Line from one DA anchor point is drawn to another
- Length of these connecting lines is controlled by p5.
- p5 = 1.0, fully connected, every anchor point connects to all the other (N-1) anchor points
- P6 controls how many DAs a p5 connecting line can cross
- p6 = 0, traditional PC

DAs in Regular Polygon

- Figure 15: DAs in a regular polygon P = (0, 0, 0, 1.0, 0, 0, 0, 1.0, 0, 0, 0)

Intro. to RadViz Spring Force

- A radial visualization
- One spring for each dimension
- One end attached to perimeter point. The other end attached to a data point.
- Each data point is displayed where the sum of the spring forces equals 0.

DAs RadViz

- Original RadViz: 3 overlapping points
- Limitation: data points with different values can overlap
- DAs spread polygon P = (0, 0, 0, 0, .5, 1.0, .5)
DA layout
- Parameters - Done!
- Layout
 - DAs can be arranged with any arbitrary size, shape or position
 - Permits a large variety of visualization designs

Combinations of Visualizations
- Can we combine features of two (or more) visualizations?
- Combination of Parallel Coordinates and Radviz

Visualization Space
- Nine parameters define the size of our visualization space as R^3
- Include the geometry of the DAs, assuming 3 parameters are used to define the geometry
- The size of our visualization space is R^{12}
- "Grand Tour" through visualization space is possible
- New visualizations can be created during a tour

Evaluation

<table>
<thead>
<tr>
<th>Strong Points</th>
<th>Weak Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idea</td>
<td>Not accessible</td>
</tr>
<tr>
<td>Many examples of visualizations with real data</td>
<td>Short explanation of examples</td>
</tr>
</tbody>
</table>

Star Coordinates
- Each dimension shown as an axis
- Data value in each dimension is represented as a vector
- Data points are scaled to the length of the axis
 - min mapping to origin
 - max mapping to the end

Where are we
- Dimensional Anchors
 - Star Coordinates
 - a new interactive multidimensional technique
 - helpful in visualizing multi-dimensional clusters, trends, and outliers
 - StarClass - Interactive Visual Classification Using Star Coordinates
Star Coordinates Contd

<table>
<thead>
<tr>
<th>Cartesian</th>
<th>Star Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P = (v_1, v_2)$</td>
<td>$P = (v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8)$</td>
</tr>
</tbody>
</table>

Mapping:
- Items \rightarrow dots
- Σ attribute vectors \rightarrow position

Interaction Features

- Scaling
 - allows user to change the length of an axis
 - increases or decreases the contribution of a data column
- Rotation
 - changes the direction of the unit vector of an axis
 - makes a particular data column more or less correlated with the other columns
- Marking
 - selects individual points or all points within a rectangular area and points them in color
 - makes points easy to follow in the subsequent transformations

Applications - Cluster Analysis

- Playing with the "cars" dataset
 - scaling, rotating, & turning off some coordinates
- Four major clusters in the data discovered

Applications - Cluster Analysis

- Scaling the "origin" coordinate moves only the top two clusters
 - (JP & Euro)
- Down-scaling the origin
 - these two clusters join one of the other clusters (American-made cars of similar specs)
- Result: two clusters

SC - useful in visualizing clusters

- Within few minutes users can identify how the data is clustered
- Gain an understanding of the basic characteristics of these clusters
Multi-factor Analysis

- Dataset - "Places"
 - ratings wrt climate, transportation, housing, education, arts, recreation, crime, health-care, and economics
 - Important desirable factors pulled together in one direction and neg. undesirable factors in the opposite

Multi-factor Analysis contd

- Scale up transportation
 - other cities beat SF in the combined measure

Evaluation of SC in Multi-factor Analysis

- Exact individual contributions of these factors are not immediately clear
- The visualization provides users with an overview of how a number of factors affect the overall decision making

Multi-factor Analysis con't

- Desirable factors:
 - recreation, art, & education
 - climate (most)
- Undesirable factor:
 - crime

 What can you conclude about NY and SF?
 - NY – outlier
 - SF – comparable arts, etc, but better climate and lower crime

Evaluation

<table>
<thead>
<tr>
<th>Strong Points</th>
<th>Weak points</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️ idea</td>
<td>☑️ ugly figures (undistinguishable)</td>
</tr>
<tr>
<td>☑️ many concrete examples with full explanations</td>
<td></td>
</tr>
</tbody>
</table>

Where we are

- Dimensional Anchors
- Star Coordinates
 - a new interactive multi-D visualization tech.
- StarClass - Interactive Visual Classification Using Star Coordinates
Classification
- Each object in a dataset belongs to exactly one class among a set of classes.
- Training set data: labeled (class known)
- Build model based on training set
- Classification: use the model to assign a class to each object in the testing set.

Classification Method
- Decision trees
 - Age > 25
 - Car type = sport car
 - Class 1
 - Class 2
 - Class 3

Visual-base DT Construction
- Visual Classification
 - projecting
 - painting
 - region can be re-projected
 - recursively define a decision tree
 - each project correspond to a node in decision tree
 - Majority class at leaf node determines class assignment
 (the class with the most number of objects mapping to a terminal region is the “expected class”)

Evaluation of the system
- **Good**
 - Makes use of human judgment and guides the classification process
 - Good accuracy
 - Increase in user’s understanding of the data
- **Bad**
 - expertise required?

Evaluation of the Paper
- **Good**
 - Ideas
 - Accessible
 - Concrete examples
- **Bad**
 - No implementation discussed

Summary
- **Dimensional Anchor**
 - unify visualization techniques
- **Star Coordinate**
 - new interactive visualization techniques
 - Visualizing clusters and outliers
- **StarClass**
 - interactive classification using star coordinate
Reference

- http://graphics.cs.ucdavis.edu/~steoh/research/classification/SDM03.ppt