
 U-Finder: An Interactive Tool for Data

Exploration and Decision-Making

Jeanette Bautista and Micheline Manske
Department of Computer Science
University of British Columbia

2366 Main Mall, Vancouver, B.C. Canada V6T 1Z4
{bautista, manske}@cs.ubc.ca

Introduction

Choosing a university or college to attend can be a daunting task. Each school has
different qualities that must be taken into account and weighed against one another when
making a decision. Location, cost of tuition, prestige, and size are just some of the
variables that potential students take into account. The selection problem is two-fold.
Firstly, information about colleges and universities is not found in a central location. In
most cases students must seek this information for themselves, either by searching school
web pages, reading brochures, speaking to current students, or visiting the schools.
Secondly, students need to put all of this information together in a meaningful way that
allows them to evaluate the pros and cons of each school and balance the trade-offs
between them. Unfortunately, people are not very good at judging tradeoffs, particularly
when the number of options to consider increases.

The goal of this project was to design a system, UFinder, for selecting a college or
university. UFinder contains a comprehensive data set of over 1300 universities and
colleges in the United States with information about schools ranging from admission
numbers to quality of education. It allows the user to reduce the data set by filtering out
schools that are not of interest, compare several selected schools against one another with
attributes adjusted to reflect user preferences, and obtain details about any school on
demand. Our system is targeted a high school students, their parents, high school
guidance counsellors, and anyone else for whom ranking schools is an important task.

The organization of this report begins with a presentation of related work. We then
explain the data set being used in our implementation. We propose a solution and
provide a scenario of use. Next we give high- level details of implementation. We then
discuss our evaluation and strengths and weaknesses of our solution. We conclude with
lessons we learned and suggestions for future work.

Related Work

Many systems have been developed to aid in exploring large data sets with many
attributes. With VisDB (Keim and Kriegal, 1994), users submit queries by way of range
sliders for each attribute. The results of the query are displayed on the screen with a pixel
for each item. The pixels are colored according to the relevance of the point to the query.
This system is good for exploring extremely large databases and looking for clusters or
trends in the data. However, it is less appropriate for selecting a small number of data
items, such as a few schools, as our problem requires.

Other researchers have investigated the more specific problem of choosing a small subset
of items from among many based on their attributes. Both HomeFinder (Williamson and
Shneiderman, 1992) and FilmFinder (Ahlberg and Shneiderman, 1994) use dynamic
query filtering – buttons and sliders which alter the parameters of the query in order to
narrow down the number of items to be considered. Homes (films) that fall within the
desired range for each attribute are shown on a graphical display. These visualizations
allow users to progressively modify the query as they explore the data set. Users can
select individual data points for closer inspection known as details on demand. The
limitation of these two systems is that they do not allow users to compare data items side-
by side. Apart from looking at the individual details of items that meet the query criteria,
the user is not supported in decision-making between items that fall in the acceptable
range.

AttributeExplorer (Tweedie et al.,1994) uses linked highlighting to support the selection
of data objects. For the example of buying a house, attributes are arranged in columns of
house icons, where each column represents one attribute with a house icon for each value
of that attribute. Selecting houses having a range of values for one attribute highlights
the same houses in the other attribute columns. This approach is limited, however, in
both the number of attributes and the number of data points it can display. As well, it
does not allow for side-by-side comparisons of data objects.

ValueCharts (Carenini and Lloyd, 2004) approaches the problem of data selection from a
different perspective. Using ValueCharts, users can weight attributes for each data
element according to their preferences. Using the example of houses, the value for each
attribute of each house is shown as a bar beside the house name. A second window
shows the cumulative total of all the attributes (normalized to the range 0-1) for each
house. Using direct manipulation, users can adjust the relative space allocated to each
attribute, thereby specifying their preferences. While ValueCharts allows for side-by side
comparison, it is limited in the number of schools or variables that can be considered at
any one time.

For our project we wished to combine the positive features of the
HomeFinder/FilmFinder and ValueCharts approaches, allowing users to dynamically
filter schools using sliders and buttons similar to those in HomeFinder/FilmFinder, then
view the filtered set of schools using a modified version of ValueCharts allowing users to
compare schools and rank them using their preferences.

Data Set

For this project we used the USNEWS data set of 1306 schools in the United States,
although in theory any data set would be appropriate. The data set is taken from the U.S.
News & World Report’s Guide to America’s Best Colleges, for the 1993-1994 academic
year. It is available from the StatLib website at http://lib.stat.cmu.deu/datasets/colleges

From the 33 attributes for each school, we selected the 21 most relevant to potential
students. These are presented in Table 1.

Attibutes in the USNEWS data set Average Math SAT score
College name Average Verbal SAT score
Location (State) Average ACT score
Public or private status % students in top 25% of High Sch. class
Number of full- time students Graduation Rate
Number of part-time students Tuition
Number of applications received Cost of books
Number of applications accepted Additional fees
Number of students enrolled Room costs
Student to Faculty ratio Board costs
Expenditure per student Average personal spending costs.

Table 1: Attributes from data set

Examination of Table 1 reveals that there is an inherent hierarchy in the attributes. We
use this to reduce the perception of an overwhelming number of variables. This is in line
with Shneiderman’s Information-Seeking Mantra: Overview first, zoom and filter, then
details on demand (Shneiderman, 1996). In order to exploit the hierarchical nature of the
data, we introduce intermediate attributes which represent an aggregate of several lower
level attributes as shown in Figure 1. This allows us to selectively hide lower level
attributes, helping the user to chunk information. The student needs to only consider four
main attributes - caliber of students, cost per year, environment, and acceptance - when
making her decision, but can drill down when necessary.

In the case of the cost tree, the intermediate attributes (school, room & board, living,
cost/year) were calculated by summing the attributes immediately below in the tree. In
all other cases the intermediate attribute represents an average of the attributes below
(normalized to the range 0-1).

Figure 1: Attributes arranged hierarchically

One problem that we encountered with the data set was that many values were missing.
For example, a school may have values for average Math and Verbal SAT scores, but is
missing the value for ACT score. There are several different possible solutions to this
problem such as ignoring the missing values or setting the missing values to the average
value for that attribute. In our case, we chose to ignore the missing values when
calculating the intermediate attributes. In the above example this would mean that the
Marks attribute would be taken as the average of the two SAT scores, ignoring the ACT.
We felt that this was more appropriate than inserting a possibly non-representative value
in for ACT score which could skew the average. In the case of the cost tree, this was
especially relevant as prices for Room and Board costs varied immensely, and it appeared
that in many cases the Room value encompassed board as well, and Board was left blank.
Substituting an average value in for Board would inflate the numbers and make the Room
and Board costs unrealistically high. A different solution was used to overcome the
problem of missing values when displaying ValueCharts, as will be discussed in a later
section.

Proposed Solution & Scenario of use

Our solution to the problem of selecting schools is two-fold. We first allow users to
reduce the number of schools to consider by filtering using dynamic sliders. When the
users have obtained an acceptable set of schools, they can explore the data and rank
schools relative to one another using a ValueChart. A screenshot of the system is shown
in Figure 2. Throughout both interactions we use the hierarchical nature of the data to
show users only the level of detail that they wish to examine.

Figure 2: Screenshot of UFinder

An example scenario of use would go as follows. Susie wishes to attend either a
University or college in the United States and uses UFinder to help make her decision.
First she wants to narrow down the available schools to consider, so she looks to the right
pane (Figure 3). She changes the default state All to California, the only state she is
considering, and selects Private as the type of school she would like. This immediately
reduces her choices, which are represented as squares on a scatter plot to the left (Figure
4).

Figure 3: Filtering control panel

Susie then turns her attention the rest of the control panel. There are still too many
schools to consider, so she begins setting ranges for acceptable values of some of the
attributes using the slider (Figure 5). She clicks on Cost Per Year and changes the slider
to represent the range $4,000 to $25,405 (Figure 5a). Susie drills down further to the
level of School Costs and Living Costs (Figure 5b). She double-clicks School to reveal
the more specific attributes Books, Tuition, and Additional fees (Figure 5c). Deciding
that this is too specific for her needs, she goes back up and uses the slider to adjust the
School Costs range to be $0 to $16012 (Figure 5d). She notes satisfactorily that the Cost
Per Year range has been adjusted accordingly. She does the same for some of the other
attributes, setting them to satisfactory ranges and leaving attributes that do not concern
her at their default setting - the entire range.

 a b

 c d
Figure 5 a-d: Adjusting the ranges of the attributes in Cost Per Year

Figure 4: Scatterplot of schools in the current range.

Throughout this process Susie has been keeping an eye on the scatter plot to the left,
which updates with each change of the slider. This visual representation of schools that
meet her criteria helps her to see trends in the data, such as the fact that schools with a
higher student/faculty ratio have lower costs, but also lower caliber of students. She also
gets further information by a linked view; clicking on a point reveals detailed information
about that particular school in the bottom pane (Figure 6). She uses this information to
refine her filters, sometimes broadening her ranges when conflicting filters have excluded
interesting schools.

Figure 6: Detailed information pane.

When Susie is satisfied with the collection of schools that meet the criteria she has set -
knowing that she can change the ranges at any time - she turns to the task of picking a
few top schools from this list. Although all of the schools meet her criteria, she wishes to
investigate further the tradeoffs between different attributes. For example, she may
discover that a high expenditure per student also means high tuition. How important are
each of these criteria to her decision? To aid in this task she uses a ValueChart by
clicking on the ValueChart button. What appears is shown in Figure 7.

Figure 7: ValueChart

Susie sees all of the schools that meet her criteria down the left-hand side. Across the top
are the top two levels of each attribute tree. For each school, a different coloured bar is
used to represent each attribute. Initially each group of attributes is given equal spacing.
The box on the right shows the combined values of all the attributes. Thomas Aquinas
College looks to be the highest ranked.

Susie has very high marks and knows she’ll get into the school of her choice. For this
reason, acceptance rates are not important to her. She does not, however, have a lot of
savings, and so she values the cost of a school highly. To reflect this, she eliminates the
Acceptance attribute column, and expands the size of the Costs attribute column. The
other columns adjust accordingly (Figure 8). Ponoma College is now the highest ranked
school, for Susie’s preferences. Susie can manipulate the different attributes to
investigate tradeoffs between them. Double-clicking on an attribute allows her to reorder
the schools by that column. If she wants more information on a school, she clicks on it to
reveal a pane with details.

Figure 8: ValueChart adjusted to a student’s preferences

When she has narrowed down choice down to five schools, Susie prints off the detailed
information on each school to discuss with her parents and school guidance counsellor at
a later time.

Implementation

The UFinder interface was written in Java using Java Graphics API and Swing on a
Windows Platform. Initially we intended to use the InfoVis toolkit (Fekete, 2004) but
found that it did not suit our needs. We preferred to paint our own scatterplot, and the
Java Graphics package provided us with this flexibility.

The slider is arranged as a tree. Changes to the ranges at any level of the tree are
propagated upwards and downwards to recalculate the ranges for attributes on other
levels. Changes to the slider submit a query to the data, and schools that are returned are
painted to the screen using their calculated Caliber field as the x coordinate and Cost as

the y coordinate. Clicking on an item in the scatterplot returns the details of the school
which are painted in the Details pane.

Clicking on the ValueChart button prints the list of filtered schools and their attributes to
a text file which is used as input to the ValueChart program. At this stage the attributes’
values are changed to reflect meaningful values in ValueCharts. All values are
normalized to the range (0,1) so that they represent a percentage of a bar to be drawn. As
well, all bar lengths represent positive attributes, so an inverse relation is applied to some.
For example, a large Student/Faculty Ratio will be represented by a small bar and vice
versa. Lastly, it would be misleading visually not to include a bar for a missing va lue.
When there is no value for an attribute, it is replaced with the average for that attribute.

The code for ValueCharts is built upon the existing program kindly loaned to us by
Guiseppe Carenini and John Lloyd. Modifications include linking clicks on the
ValueCharts interface to the Details pane. The colours for ValueCharts were chosen to
visually chunk the material into four distinct groups using four different shades, with
brightness varying for attributes within the same tree. The information in the colours is
coded redundantly for colour-blind users in the panels grouping across the top, and the
varying shades beside one another.

Results & Evaluation

To test our interface and how it supports the task of choosing a University or college, we
ran an informal evaluation with 6 users. We were particularly interested how a
ValueChart enhances the decision-making process over standard dynamic queries.

We split the schools into two sets, A and B. Users were presented with two interfaces,
the straight UFinder interface without ValueCharts (NVC), and the interface including
ValueCharts (VC). The interfaces were counterbalanced so that half the subjects saw the
NVC interface first, and the others the VC interface first. Subjects received a brief
demonstration of the interface before performing the task. To make the task as realistic
as possible users were asked to find three schools that they would consider attending.
They were not timed because speed does not indicate satisfaction with the interface.
Rather, they were told to take as much time as needed to explore the interface and stop
when they were completely satisfied with their choices. They then repeated the
demonstration and the task with the second interface and the second set of schools.
Afterwards we conducted a semi-structured interview to find out which interface the
participants found more useful, which they preferred, and which led them to have the
greatest confidence in their decision.

Participants found the interface with ValueCharts more useful on average than the
interface without ValueCharts (Figure 9). However, they rated interfaces equally when
asked how satisfied they were with the schools they chose. This indicates that although
ValueCharts is perceived to be more useful, enough information was derived from the
NVC interface to come to a satisfactory decision. This trend would be interesting to
investigate further in a formal user study. One user commented “UFinder wasn’t hard to
figure out. I wouldn’t base a decision solely on this, but would find it useful as a starting
point.”

Figure 9a-b: Subjects rankings of Usefulness (1=not useful to 5=very useful)

When asked to select which interface they would prefer, more users preferred
ValueCharts (Figure 10). Comments included “both interfaces were quite easy to use, but
I felt that the second (with ValueCharts) was much more informative”, and “(with
ValueCharts) was easier to use because the criteria for choosing a school can be sorted in
order of priority.”

User Preference

0

1

2

3

4

5

With VC No Vc No Pref

Interface

N
u

m
b

er
 o

f U
se

rs

Figure 10: User interface preference

Several user comments pointed out improvements that could be made to the interface,
such as colouring the squares in the scatterplot based on public/private status or state,
adding a button to reset the sliders to their original values, or including the option to
search for a particular school by its name. One user suggested making “selected” schools
stay permanently on the display despite other changes of the sliders.

Our own evaluation of the interface revealed the following strengths and weaknesses.
We find that the hierarchy was helpful to use when browsing the data set. It made the
number of attributes much more manageable and allowed us to manipulate ranges as an
appropriate level of granularity.

There are some weaknesses with the system that could be improved upon. The outliers in
the data set cause many of the values to fall within a narrow range on the sliders. This
also affects the relative size of bars in ValueCharts. We attempted to overcome this
problem in ValueCharts by setting the outlying values to 1, and normalizing the rest over
the resulting range.

With ValueChart

1

2

3

4

5

User1 User2 User3 User4 User5 User6

U
se

fu
ln

es
s

No ValueChart

1

2

3

4

5

User1 User2 User3 User4 User5 User6

U
se

fu
ln

es
s

A second weakness is that the interface requires a certain amount of understanding by the
user. Optimally, the ValueCharts should be viewed only after filtering to roughly 20
schools or less. Secondly, the user must be encouraged to interact with the ValueCharts
pane by adjusting the widths of the columns. Often the best strategy is to eliminate
columns for unvalued criteria altogether. A tutorial on the how to use ValueCharts with
guidelines might help first-time users fully appreciate the powerful support for decision-
making that ValueCharts offers.

Conclusions and Future Work

This project was an incredible learning experience for both students involved. As our
first Java program we learned a great deal along the way about Swing components. We
learned how to manipulate data, and the difficulties in dealing with a large data set for
which many values are missing. We gained experience running an informal user study to
test our design.

In the future we would have looked to get an initial medium-fidelity prototype off of the
ground before working with the entire database. In particular this would have helped us
to see the problems with outliers and missing data values earlier on, and how they would
skew the range calculations and visual impact of the data. More testing with users
throughout the design process would have overcome problems that were not anticipated.

Future directions for this work are to implement linked ValueCharts, so that clicking on
an attribute would bring up a ValueChart for the attributes lower in that tree. It would be
desirable to run a full user study to find out whether the attribute set that we chose are
true factors that influence selection of which University to attend. This work could be
extended to apply not just to selecting schools, but to any domain with data that are
arranged hierarchically.

References

Ahlberg, Christopher and Shneiderman, Ben. Visual Information Seeking: Tight
Coupling of Dynamic Query Filters with Starfield Display. Proc. ACM CHI 1994, pp
313-317.

Carenini, Giuseppe, and Loyd, John. ValueCharts: Analyzing Linear Models Expressing
Preferences and Evaluation. In publication.

Fekete, Jean-Daniel. The InfoVis Toolkit. Version 0.6alpha2, 2004.
http://www.lri.fr/~fekete/InfovisToolkit/

Keim, Daniel A., and Kriegel, Hans-Peter. VisDB: Database Exploration using
Multidimensional Visualization. IEEE CG&A, 1994.

Shneiderman, Ben. The eyes have it: A task by data type taxonomy for information
visualizations. Proceedings IEEE Visual Languages1996, pp. 336-343.

Tweedie, Lisa, Bob Spence, David Williams, and Ravinder Bhogal. The attribute
explorer. Conference on Human Factors in Computing Systems 1994, pp. 425-436.

Williamson, Christopher, and Shneiderman, Ben. The Dynamic HomeFinder: Evaluating
dynamic queries in a real-estate information exploration system. Proc. ACM SIGIR’92,
pp 338-346.

