Perception
Lecture 6 CPSC 533C, Fall 2004
29 Sep 2004
Tamara Munzner

Readings
Ware, Chapter 5: Visual Attention and Information That Pops Out
Ware, Chapter 6: Static and Moving Patterns
Graphical Perception: Theory, Experimentation and the Application to the Development of Graphical Models

External Representation
reduces load on working memory
• offload cognition
familiar example: multiplication/division

External Representation: multiplication
paper mental buffer
57 48
×
57 48
[7*8=56]
External Representation: multiplication

<table>
<thead>
<tr>
<th>Paper</th>
<th>Mental Buffer</th>
</tr>
</thead>
</table>

\[
\begin{align*}
57 & \times 48 & \frac{5 \times 8 = 40}{\text{[5*8=40 + 5 = 45]}} & \text{[5*8=40 + 5 = 45]} \\
6 & & 456 & 456
\end{align*}
\]
External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8 + 5 = 13</td>
<td></td>
</tr>
</tbody>
</table>

External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td>1456</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>4 + 2 + 1 = 7</td>
<td></td>
</tr>
</tbody>
</table>

External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td></td>
</tr>
<tr>
<td>736</td>
<td></td>
</tr>
<tr>
<td>[4 + 2 + 1 = 7]</td>
<td></td>
</tr>
</tbody>
</table>

External Representation: multiplication

<table>
<thead>
<tr>
<th>paper</th>
<th>mental buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>x 48</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td></td>
</tr>
<tr>
<td>2736</td>
<td></td>
</tr>
<tr>
<td>[4 + 2 + 1 = 7]</td>
<td></td>
</tr>
</tbody>
</table>
External Representation

reduces load on working memory
- offload cognition

familiar example: multiplication/division

synthetic example: information visualization
- interactive visual representation of abstract data
- help human perform some task more effectively

External Representation: topic graphs

[Godel, Escher, Bach. Hofstadter 1979]

Paradoxes – Lewis Carroll
Turing – Halting problem
Halting problem – Infinity
Paradoxes – Infinity
Infinity – Lewis Carroll
Infinity – Unpredictably long searches
Infinity – Recursion
Infinity – Zeno
Infinity – Paradoxes
Lewis Carroll – Zeno
Lewis Carroll – Wordplay

Halting problem – Decision procedures
Bloop and Floop – AI
Halting problem – Unpredictably long searches
Bloop and Floop – Unpredictably long searches
Bloop and Floop – Recursion
Tarski – Truth vs. provability
Tarski – Epimenides
Tarski – Undecidability
Paradoxes – Self-ref

External representation example

offload cognition to visual systems
read off answer

Dimensional ranking

Dimensional ranking varies by data type

spatial position best for all types

Cleveland's study

position along common scale
positions along nonaligned scales
length, direction, angle
area
volume, curvature
shading, color saturation

Human Perception

- sensors/transducers
 - psychophysics: determine characteristics

- relative judgements: strong
- absolute judgements: weak
 - continuing theme

- different optimizations than most machines
 - eyes are not cameras
 - perceptual dimensions not nD array
 - (brains are not hard disks)

Psychophysical Measurement

- JND: just noticeable difference
- increment where human detects change
- average to create "subjective" scale

Nonlinear perception of magnitudes

- sensory modalities not equally discriminable
- Stevens power law

\[S = I^n \]

Dimensional dynamic range

- lineweight: limited discriminability

Weber's Law

- ratio of increment threshold to background intensity is constant
- relative judgements within modality

\[\frac{\Delta I}{I} = k \]

Cleveland example: frame increases accuracy

Cleveland suggestions

- dot chart over pie or bars
- direct differences over superimposed curves
- framed rectangles over shading on maps
Preattentive visual dimensions

- color (hue) alone: preattentive
 - attentional system not invoked
 - search speed independent of distractor count

Non-preattentive: parallelism

- many preattentive dimensions of visual modality
 - hue
 - shape
 - texture
 - length
 - width
 - size
 - orientation
 - curvature
 - intersection
 - intensity
 - flicker
 - direction of motion
 - stereoscopic depth
 - lighting direction

Preattentive visual dimensions

- color alone: preattentive
- shape alone: preattentive
- combined hue and shape: multimodal

- requires attention
- search speed linear with distractor count

Integral vs. separable dimensions

- red-green
- x-size
- y-size
- orientation
- shape
- color
- color
- motion
- location

Gestalt Laws

- principles of pattern perception
 - “gestalt” German for “pattern”
 - original proposed mechanisms wrong
 - rules themselves still useful

- Pragnanz
 - simplest possibility wins

- subsequent examples from
 - Information Visualization: Perception for Design
 - Colin Ware
 - Morgan Kaufmann, 2000
Gestalt Principles

- Proximity, similarity, continuity/connectedness, good continuation, closure, symmetry
- Common fate (things moving together)

psychlab1.nanower.edu/classes/Sensation/nld013.htm

- Figure/ground, relative sizes

Proximity

![Proximity Diagram](image)

Similarity

![Similarity Diagram](image)

Continuity

- Smooth not abrupt change
- Overrules proximity

![Continuity Diagram](image)

Transparency

- Needed for perception
 - Continuity
 - Color correspondence

![Transparency Diagram](image)

Connectedness

- Can overrule size, shape

![Connectedness Diagram](image)
Closure
overrules proximity

Symmetry
emphasizes relationships

Common Fate

Relative Size
smaller components perceived as objects

Figure/Ground
determined by combination of previous laws

Graph Drawing Tension
node placement
- close proximity
- far visual popout of long edge
- either connectedness

tradeoffs abound in infovis!
Foveal Vision

thumbnail at arm’s length
small high resolution area on retina

Foveal Touch

star-nosed mole

Ears

perceived as temporal stream
- but also samples over time
- hard to filter out when not important
 visual vs auditory attention

implications
- harder to create overview?
- hard to use as separable dimension?

'sonification' still very niche area
- alternative: supporting sound enhances immersion

Equal Legibility

if fixated on center point

Eyes

saccades [video]
- fovea: high-resolution samples
- brain makes collage
- vision perceived as entire simultaneous field
- fixation points: dwell 200–600ms
- moving: 20–100ms