Focus+Context

Leung and Apperly taxonomy

Nonlinear Magnification Fields

2D Hyperbolic Trees

3D Hyperbolic Graphs

Intuition

Bifocal

Perspective Wall

Polyfocal: Continuous Mag
Fisheye Views: Continuous Mag

- Transformation
- Magnification

1D, 2D rect, polar, norm polar

Multiple Foci

- Same params
- Diff params

Polyfocal magnification function dips allow this

Nonlinear Magnification Functions

- Transformation
- Distortion
- Magnification
- Derivative of transformation

- Directionality
 - Easy: Compute transformation given magnification derivative
 - Hard: Compute magnification given transformation integration

- New mathematical framework
 - Approximation, integration, iterative refinement
 - Minimize "error mesh"

Expressiveness

- Magnification is more intuitive control
- Allow expressiveness, data-driven expansion

2D Hyperbolic Trees

- Fisheye effect from hyperbolic geometry

3D Hyperbolic Graphs: H3

- Task
 - Browsing large quasi-hierarchical graphs

[video]
Previous work: graph drawing
scalability bottleneck layout avoiding disorientation

Graph layout criteria
- minimize crossings, area, bends/curves
- maximize angular resolution, symmetry
- most criteria NP-hard
 - edge crossings (Carey and Johnson 83)
Graph layout criteria
- minimize: crossings, area, bends/curves
- maximize: angular resolution, symmetry

most criteria NP-hard
- edge crossings [Carey and Johnson 83]

incompatible
- Brandenburg 88

Layout
- problem: general problem is NP-hard

Avoiding disorientation
- problem: maintain user orientation when showing detail
 - hard for large datasets
 - exponential in depth: node count, space needed

Overview and detail
- two windows: add linked overview
 - cognitive load to correlate

solution
- merge overview, detail
 - "focus+context"
Contribution: focus + context graphs

- H3 [Munzer & Burchard 95]
- webviz [Munzer & Burchard 95]
- 3D Hip Trees [Camping et al. 96,99]
- Fuzzy Trees [Kolod & Wohlers 98]
- Cone Trees [Robertson et al. 91]

3D hyperbolic space

- 3-hyperboloid projects to solid ball

H3 layout

- circumference -> hemisphere

Progressive rendering

- want fast update during user interaction
 - fill in details when user is idle

- problem: dataset too big to draw in single frame

- solution: guaranteed frame rate algorithm

- progressive refinement: gradually improve image vs. standard Z-buffer
 - common in graphics [Bergman et al. 86]
 - far less attention in infographics

H3Viewer algorithm

- drawing queue for nodes
 - graph-theoretic
 - add parent, child nodes to queue
 - view-dependent
 - sort queue by screen area

H3 video (excerpts)
H3 results
scalability
 performance
 - layout
 110K edges, 12 seconds (1997: SGI IR2)
 300K edges, 16 seconds (2002: Intel P3)
 - drawing
 constant time; guaranteed frame rate
 - limited by main memory size

H3 results: scalability
information density: 10x better
H3

H3 discussion: scalability
focus + context layout
 success: large local neighborhood visible, 5-9 hops
cognitive limit: if graph diameter >> visible area

TreeJuxtaposer
extended cognitive limit
 move from local F+C to global F+C

Noneuclidean geometry
Euclid's 5th Postulate
 exactly 1 parallel line
spherical
 - geodesic = great circle
 - no parallels
hyperbolic
 - infinite parallels
Parallel vs. equidistant
euclidean: inseparable
hyperbolic: different

Exponential “amount of room”
good match for exponential node count of trees

2D hyperbolic plane embedded in 3D space
hemisphere area
hyperbolic: exponential
hyperbolic: $2 \pi \sinh^2(r)$
euclidean: polynomial
$2 \pi r^2$

Models, 2D
not just round!

Klein/projective
Poincare/conformal
Upper Half Space

Minkowski
1D
2D
the hyperboloid itself
embedded one dimension higher

1D Klein
hyperbola projects to line

2D Klein
hyperboloid projects to disk

[assets: Geometrize]
[assets: www.geomlab.com/~/ocelade/hyperboloid/hyp/shp/mibs/4hyp.mib]
[assets: graphics.com/fnd.com/papers/marzipheapers/html/node069.html]
Klein vs Poincare

- stereographic projection
 - transparent sphere
 - plane at south pole
 - light at north pole

 [demo: torus.math.uiuc.edu/jms/java/stereop/]

- transformation from Klein to Poincare
 - vertically project disc to hemisphere
 - stereographically project hemisphere to Poincare disc

 [video: www.geom.uiue.edu/~crabbs/hyperbolic/hyperbolic.mpg]

graphics

- Klein: 4x4 real matrix
- Poincare: 2x2 complex matrix

Upper Half Space

- "cut and unroll" Poincare
 - one point on circle goes to infinity

 [demo: www.geom.uiue.edu/~crabbs/hyperbolic/hyper/hypj2d/hypj2dapp.html]

Models, 3D

- Klein/projective
- Poincare/conformal
 - "inside"

 [http://graphics.stanford.edu/papers/newcon/]

 - Upper Half Space
 - Minkowski

3D Insider

- insider: camera also moves by hyperbolic rules
 - cool, but limited visibility

 [demo]

3D Klein

- 3-hyperboloid projects to solid ball

3D Minkowski

- 3-hyperboloid embedded in 4D space
 - light cone: special relativity
 - diagrams in 2D for clarity
 - timelike: inside cone, speed < c
 - lightlike: on cone, speed = c
 - spacelike: outside cone, speed > c
 - can’t affect