Projects, Navigation/Zooming

Lecture 12 CPSC 533C, Fall 2004
Tamara Munzner
27 October 2004

Projects
 proposals
 · projectdesc.html#proposals

software
 · resources.html#software

datasets
 · resources.html#data

Proposals

meet with me (at least) once in person first
at least two pages, use HTML
 · submit URL to me by 2pm Fri Nov 5

writeup
 · names/email for all team members
 · describe domain, task, dataset, your expertise level
 · explain proposed infovis solution
 · abstraction
 · scenario of use
 · illustrations of proposed interface
 · scanned hand-drawings or mockups with
drawing program
 · proposed implementation approach
 · language, platforms, existing toolkits
 · milestones

Data

resources.html#data

Reading

(from before) Ware, Chap 10 [navigation]
Rapid Controlled Movement Through a Virtual 3D Workspace
(optional)
Design Guidelines for Landmarks to Support Navigation in Virtual Environments
Norman C. Vitamin, Proc. SIGCHI 99. (optional)
Tuft, Chap 2: Macro/Micro
Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics
Ben Bederson, and James D Hallin, Proc. IAST 94.
Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCH 95.
Speed-Dependent Automatic Zooming for Browsing Large Documents
 Taken Ijastorza and Ken Hinckley, Proc. UIST 00, pp. 139–148.
Smooth and Efficient Zooming and Panning,

What Kind of Motion?

rigid
 · rotate/pan/zoom
 · easy to understand
 · object shape static, positions change

morph/change/distort
 · object evolves
 · beating heart, thunderstorm, walking person
 · multiscale/ZUI
 · object appearance changes by viewpoint
 · focus+context
carefully chosen distortion
Ware Chapter 10 – Spatial Navigation

- world in hand
 - good: spinning discrete objects
 - bad: large-scale terrain

- eye in hand
 - explicitly move camera

- walking
 - real-world walking
 - terrain following

- flying
 - unconstrained 6DOF navigation

- other: constrained navigation!

Rapid Controlled Movement

- move to selected point of interest
 - normal to surface, logarithmic speed

- trajectories as first-class objects

[video]

Spatial Navigation

- real navigation only partially understood
 - compared to low-level perception, JNDs

- spatial memory / environmental cognition
 - city: landmark/path/whole

- implicit logic
 - evolved to deal with reality
 - so we'll learn from synthetic worlds
 - but we can't fly in 3D...

- how much applies to synthetic environments?
 - even perception not always the same!

Design Guidelines for VE Landmarks

- Ware's derived guidelines
 - enough so always can see some
 - visually distinguishable from others
 - visible and recognizable at all scales
 - placed at major paths/junctions
 - others, only some of of these crossover for infovis!
 - need all 5 types of landmarks
 - path, edge, district, node, landmark
 - concrete not abstract
 - asymmetry, different side looks different
 - clumps
 - different from "data objects"
 - need grid structure, alignment

Macro/Micro

- classic example: map
 - arms-length vs. up-close

- paper vs. computer screen
 - 300–600 dpi vs. 72 dpi (legally blind)
 - finally changing

- possibly available for projects
 - 22" 200dpi IBM T221 display
 - 9 Mpixels (4000x2000)

Pad++

- "infinitely" zoomable user interface (ZUI)
Space–Scale Diagrams
reasoning about navigation and trajectories

Space–Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI ’95.

Shortest Path

Shortest Path, Details

Speed–Dependent Automatic Zooming

- Automatic zooming for browsing large documents

[Demo](www.ui.is.s.u-tokyo.ac.jp/~takeo/java/autozoom/autozoom.html)
[Video](www.ui.is.s.u-tokyo.ac.jp/~takeo/video/autozoom.mov)

- Amount depends on how far to pan

Smooth and Efficient Zooming

- \(u \) = pan, \(w \) = zoom
- Horiz axis: cross–section through objects
- Point = camera at height \(w \) above object
- Path = camera path

Optimal Paths Through Space

- At each step, cross same number of ellipses
- Cross minimal number of ellipses total

Multiscale Display
Multiscale Desert Fog

Critical Zones in Desert Fog: Aids to Multiscale Navigation
Susanne Jul, George W. Furnas UIST 98

- environment devoid of navigational cues
 - not just Pad: 6DOF navigation where object fills view

- designer strategies
 - explicit world creation – fog not made on purpose
 - games – partial counter example
 - island of information surrounded by desert fog

- Pad: min/max visibility distances

View–Navigation Theory

Effective View Navigation, CHI 97
George Furnas

- characterizing navigability: viewing graph
 - nodes: views
 - links: traversible connections

1. short paths between all nodes
 - true in ZUIs (e.g. speed–dependent zooming)

2. all views have small number outlinks
 - not overwhelmed by choices

Critical Zones

region where zoom–in brings interesting views
- show with navigation "residue"

- unambiguous action choice
 - visible critical zone "residue" of stuff beneath
 - zoom out if see nothing

extension to VN theory
- 3. all views contain good residue of all nodes
- 4. all links must have small outlink-info
- must build support for these into ZUIs

- do not have "minsize", always use a few pixels
 - they don't address clutter/scalability

What's This?

Fisheye Focus+Context View!

preview of next time