
Unpackable Treemaps as Web History Graphs

Jennifer Tillett

Department of Computer Science

University of British Columbia

ABSTRACT
Web browser users often find themselves lost in their

navigation. They cannot revisit pages they have already seen and
have little sense of the context of their browsing. Web history
graphs can augment or replace traditional browser history
mechanisms.

I have implemented a web history application called
Unpackable Treemaps which is coupled with a web browser.
Unpackable Treemaps builds a treemap representing a user’s
browsing history which can be navigated to find previously
visited sites. Unpackable Treemaps are organized by browsing
session and a user can add on to any session by focusing a
previously visited page in Unpackable Treemaps, which will bring
it back up in the browser.

Unpackable Treemaps also feature an interactive design which
allows the user to “pack up” nodes which do not interest him for
the time being. The user can zoom in on interesting features of
the treemap and delete subtrees.

CR Categories and Subject Descriptors: H.5.4

[Hypertext/Hypermedia]: Navigation, User Issues, I.3.6
[Computer Graphics]: Interaction Techniques

Additional Keywords: Web History Visualization, Information
Visualization, Web Browser Usability

1 INTRODUCTION
Browsing the web, as enjoyable as it is for most, can be quite

difficult for the novice or even an experienced user when he has a
specific task or search in mind. Even within one session,
navigation can quickly lead the user deep into a tangle of
hyperlinks -- unsure of how he got there, how to get out, or
especially how to return to a previously-browsed web page. The
problem compounds between browsing sessions, when the user
would like to revisit a useful web page but cannot remember the
address or how he got there. Though tools exist to aid the user in
this kind of navigation, these are not used very frequently.
Moreover the tools available have limitations on their
functionality which may inhibit their use.

The phenomenon of being "lost" in hyperspace is all too
common for the average user. Surveys have shown that between
13.4% and 16.6% of users report that finding previously visited
web pages is a major problem [6] [7]. This number is significant
because it is estimated that a majority of a users page visits are
actually revisits. In surveys conducted in 1996 and 2000, it was
found that between 42% and 80% of page visits are revisits [7].

Most browsers have simple functions to help the user navigate
back to previously visited web pages, such as Back and Forward
buttons, bookmarks, and history trees. However some of these
tools may be underutilized by the average user. In a survey
conducted by Catledge and Pitkow, it was found that page visits
as a result of pushing the Back button comprise 40.6% of a user’s
actions, but only 2% of navigation was due to bookmarks, and
0.1% was a result of consulting the history list [4]. Clearly, some

of the tools provided with web browsers are not considered useful
by the majority of users.

Some problems with traditional history mechanisms include:
1. The Back button is implemented as a stack, so

branches, where the user has visited two links from
the same page using the Back button to navigate
back to the original page, are not maintained.
According the Back button, the first link was never
visited.

2. Bookmarks require a prescience of which pages will
be useful in the future, as well as maintenance by the
user. He must explicitly choose to save the page and
keep the list organized so that it itself is navigable.
This is difficult because bookmark lists grow at a
rate of about one page per 5 days [7].

3. History trees a) are text-based, requiring the user to
recall whether a page is the one he's seeking based
only on a title and a URL, b) are frequently
organized only by domain, not by order of visitation
and c) require navigation to use, as the user must
select the history browser from a menu before he can
search it.

Many alternatives to traditional browser histories have been
developed to combat these problems. These applications are
typically graphical representations of a user's history presented in
an interactive manner, tightly coupled with the user's web browser
so that navigation in the web history application affects navigation
in the browser window and vice versa. The type and form of
these web histories varies by the structure used to represent the
data and the organization of the data. Often seen are trees or
cyclic graphs for the data structure, but the organization is highly
varied. Some applications, such as the Domain Tree Browser [6],
choose to organize the history by domain, in the same manner as
the browser's history. Others seek to preserve the structure and
linkages of the user's browsing, such as in the Zooming Web
Browser by Bederson et. al. [1]. Some choose to link the data by
other similarity measures such as the content of pages, or in the
case of Nestor [10], a user’s personal classification of a
document’s meaning. Still others have combined a user’s path
with domain information, such as in WebMap [5], and Browsing
Icons [7], which also uses a cyclic graph.

For my web history application, I have chosen a tree metaphor
for the history data. However, I have chosen to use nested
treemaps to draw the tree rather than a node-link diagram. There
are several reasons for this. First, these treemaps save space over
a node-link diagram by eliminating arcs and by overlapping nodes
with one another, which presents an opportunity to fill a node with
more information about the node such as an image and/or a name.
Second, nested treemaps represent hierarchy very clearly even
201-2366 Main Mall
Vancouver BC Canada V6T 1Z4
jtillett@cs.ubc.ca

within the minimum of space. Third, treemaps offer the benefit of
preserving some information about a node in its size, such as
importance or degree of interest. The problems that trees and
treemaps present is that a) there is no handling of cycles and b)
treemaps do not offer a method of aggregation for condensing
nodes which are not currently of interest.

In this paper I describe the tool called Unpackable Treemaps. It
is implemented as a coupled web browser and web history graph,
for displaying and interacting with the browser’s history as a
treemap. It is intended to be a suitable tool for any web browser
user with any level of experience. Some familiarity with treemaps
would help in using the application, but it is not necessary.

The rest of this paper is as follows: In Section 2, I describe the
related work in the area of graphical web history maps. Following
this, in Section 3 I describe the key features of Unpackable
Tremaps. In Section 4 I present a sample scenario that illustrates
how Unpackable Treemaps can be used. Section 5 is an
evaluation of the strengths and weaknesses of Unpackable
Treemaps, and Section 6 presents future work which would
increase the usability and functionality of Unpackable Treemaps.
The_final section concludes.

2 RELATED WORK
Many other graphical web history browsing applications have

been developed in the last 10 years. Each attempted to improve
upon commercial web browser’s existing history mechanisms, and
discover the best methods for presenting a browser history to the
user.

Bederson et. al. developed a “Zooming Web Browser”, based
on Pad++, a zoomable user interface toolkit which is now
available as Jazz1 [1]. The developers chose to represent the
browser history as a node-link tree, where each node is a window
in which a hypertext document can be displayed. Clicking links
in a document adds a node to the tree as a child of the document
containing the link. The interface allows panning and zooming so
that the user can smoothly move between focus and context.

Browsing Icons is a visual web history tool created by Mayer
and Bederson [7]. Browsing Icons chose a session/task format for
saving history, and stores a separate graph for each session. The
session is considered to be a unit wherein the user is browsing the
web with some task in mind. In experiments with a session-based
history map, users have appreciated this “chunking” of work on
the web into manageable pieces. Each session is represented as a
cyclic graph, with pages represented as small circular nodes which
grow as a function of the number of times the page has been
viewed. The pages’ titles are displayed as labels next to nodes.
The authors believe that the unique structure of each session’s
graph helps the user by serving as landmarks for different task
sessions.

WebMap, developed by Peter Doemel, is a browser extension
that creates a spanning tree which represents the exact structure of
a user’s browsing [5]. The tree is represented as a node-link
diagram with numbers as labels. Choosing nodes displays the title
and URL of the page represented and displays the page in the
browser.

The Domain Tree Browser is a web history visualization tool
that organizes history by domain [6]. A tree is built for each
domain the user has visited with branches representing all of the
pages visited within that domain. The user accesses a specific
domain tree from a list of all domains visited.

NESTOR Navigator is a tool that helps a user create a personal
network of browsing history [10]. A tree is created using the

1 http://www.cs.umd.edu/hcil/jazz/

user’s browsing history, which the user can then alter by adding
their own documents or altering the graph’s shape, by adding
notes and keywords, and by specifying conceptual areas which
documents can be pinned to. Documents are represented in a
node-link graph with documents drawn as small circles and titles
displayed as labels next to nodes.

Finally, in related work Catledge and Pitkow surveyed web
user’s habits, including use of browser tools and typical history
session, and categorized 3 types of browsing strategies [4]. The
“Serendipitous Browser” makes fairly shallow browsing paths and
avoids long sequences. The “Searcher” often performs very long
navigational sequences, but far less frequently performs short
sequences. The “General Purpose Browser” is the average of the
other two types of browser.

3 UNPACKABLE TREEMAPS
Unpackable Treemaps is a tool implemented to help users

navigate the history of their web browsing. It consists of a simple
web browser and a visualization application which draws the
user’s web history as an interactive treemap.

The user’s history is stored as sessions, where one session is an
instance of starting the web browser and following hyperlinks or
entering URLs into the text field at the top of the browser in order
to open web pages. The session terminates when the web browser
is closed. Information is stored for each session about the date
and time of browsing and the structure of the paths the user took
while browsing, That structure consists of one node for each page
that is visited in a session. Within a page’s node, information is
stored about the page’s URL, title, thumbnail image, background
color and permissions on whether it can be packed or rolled up.
Upon starting a session the user has an option to give her
browsing session a name, based on the task she seeks to perform
in this session or any other criteria.

Whenever the user chooses, she can open the Unpackable
Treemaps visualization using a button at the top of her browser.
This opens a new window displaying all of her saved history,
including past sessions, as a treemap. Each node in the treemap is
either the tree’s root, a session root, or a web page that was
browsed. The background of a node will be coloured according to
criteria discussed in Section 3.3. If space allows, nodes will also
display their name, which is the default label for nodes. The
session root will display the name that the user chose for that
particular session. Also displayed where space allows is the
node’s image, if a thumbnail screenshot of the web page is
defined for that node. Figure 1 is a screenshot of the application
in action.

If space is tight, nodes will display only their labels, and
children node at the greatest depths may not be displayed. In this
case, the user can zoom in on sessions or nodes of interest, and the
subtree beginning from that node will be displayed, taking up the
whole of the visualization panel. The user can continue to zoom,
or return to the global view of all nodes for context. At any time,
the user can left-click a node to display a popup menu which
offers options for managing the tree, including zoom, showing all
nodes of the tree at once and as much of each node as possible,
setting the focus to a particular node, showing more or less of a
node, packing or unpacking a node, and deleting a node.

Showing all nodes sets the size preference for each node to the
minimum size possible so that each node has equal weight for the
treemap drawing algorithm. When this option is selected, no node
has focus, and only leaf nodes will have the option of showing
their images, though all nodes may show their labels if space is
available.

Setting the focus to a particular node allocates more space to
that node and its ancestors and children by giving them heavier
weights for the treemap drawing algorithm. All other nodes have

the minimum weight. When a node is set in focus, the
corresponding URL is brought up in the web browser, and if the
user navigates from that site the navigation is added to that
particular node, even if it is from another session. In this way, the
browser is coupled to Unpackable Treemaps, but only in a one
way tight coupling. Navigation in the browser does not
automatically update Unpackable Treemaps; the user must press
the button to display Unpackable Treemaps again if she wishes to
update the tree displayed in the visual panel.

Expanding a node sets the preference for that node so that if
possible a greater portion of the node will be displayed, making
room for the screenshot. Rolling up a node sets the preference
that the node should not be expanded even when there is space to
do so.

Packing a node slides a node’s children up to use all the space
that the node was allocated, hiding the node from view. When
this happens the children’s background becomes red to indicate
that they are occluding their parent. Unpacking forces a node’s
parent to be unpacked and displayed.

3.1 Navigation/Zooming
When the user opens Unpackable Treemaps, her whole history

is visualized, with the current session receiving the focus and thus
the largest plot of screen real estate. In this situation, both focus
and context are maintained in one visual panel. However, because
the focused nodes are given so much space, the user may not be
able to discern much detail in the unfocused area. In this case she
can do one of four things:

• Choose to show all items with the exact same degree

of focus.

• Choose to set the focus on a different node, allowing

it the majority of the screen space and minimizing the
previously-focused node.

• Zoom in on areas of interest.

• Pack or roll up nodes she is not interest in.

Zooming is not smoothly animated in Unpackable Treemaps.

When a user chooses a node to zoom in on, the display jumps to a
view where that node and its children, or (if the node is a leaf) the
node and its parent, take up the entire visual panel. When the user
clicks the right mouse button the display jumps back to the global
view of all the history.

3.2 Aggregation and Filtering
Because there is simply not enough screen space to display all

of the features of every node, some data must be aggregated in
order to display the entire context of the user’s history. The most
natural choice for a high level of the history, as it is stored in this
application, is the session level. Thus in all views, even if nodes
are packed tight so that no labels or images are visible, the session
node still displays its label. The user can then choose to expand
or zoom in on a particular session which interests him.

There are two ways in which nodes can become aggregated, or
“packed up”: by automatic sizing and by manual packing.

Automatic sizing occurs both when the user chooses to show all
nodes and when the user sets the focus on a particular node. In
both cases, nodes are assigned a weight which is used by the
treemap algorithm to choose a size for the node. When a node is
set to be in focus, it is given a weight of 30 (on a scale from
minimum 1 to maximum 50), and its ancestors and children are
assigned diminishing weights by their degree of interest, which is
defined as the difference in depth between the ancestor or child

and the focused node. When the user chooses to “show all”
nodes, each node is given the minimum weight. In both of these
cases, Unpackable Treemaps determines how much of a node and
which nodes can be shown based on their size weight and the
mode the user has chosen. In “show all” nodes can be packed up
to their minimum size (with no label or image showing for parent
nodes), if that is required to display all of the children of a branch.
In “set focus” mode, showing labels is preferred and so the last
children may be packed up and invisible. In this case, there is no
visual indication that there are packed children, but when the user
zooms in on a thread they will become visible.

Manual packing, also referred to in this paper as a “red” pack, is
the situation where the user chooses a specific node to be
aggregated with its child. Choosing the menu item “Pack” for a
node hides the node behind its child, and allows the child node to
occupy the node space that was allocated to the parent. In this
case the child node becomes red to indicate that it is hiding at
least one parent.

In this application, aggregating nodes which are ancestors of
each other is almost guaranteed to be an aggregation of similar
nodes. Connectedness in the tree is a good similarity measure for
the session history tree because if a link exists between two pages
they likely are similar in content, or at least similar in the user’s
mental model.

Related to aggregation are sorting and filtering functions
provided in the control panel. At any time the user can choose to
sort the treemap or filter its contents based on any attribute of the
nodes, which include depth, degree (number of children), name,
URL and date of browsing.

3.3 Colour
The background of each node in Unpackable Treemaps is

coloured to convey information about depth, the domain, or
whether the node has packed parents. Only three colours are used
to distinguish types of domain: black indicates that a web page is
the user’s home page, blue indicates that the domain is a search
engine such as Google, and a greyscale colour indicates all other
domains. Red is used as a background to indicate that a node has
parents which are packed away behind it. Saturation (the
greyscale for backgrounds) is used as a depth cue in addition to
the nesting of nodes; the lightness of a greyscale node indicates
how deep it is in the hierarchy, i.e. how many ancestors it has.
The saturation scale from black (exclusive) to white (inclusive)
has 13 steps, due to Catlege and Pitkow’s observation that the
mean successive document requests within a single site is 10.64
and my observation that when the nesting goes beyond about 12
nested nodes it is preferable to zoom in for more information [4].

Although the use of color for representing domain type does not
take advantage of the user’s preattentive processing of colour, the
greyscale depth does. It is very easy to see, without beginning to
scan, which nodes are child nodes and where searches began as
well as the length of browsing paths.

Fewer colours were used in Unpackable Treemaps because it
was thought that when displaying screen shot thumbnails (which
may be colourful themselves) too many extra colours would prove
distracting. In addition, it was not thought to be useful to group
nodes into colour bins because it is not known if the developer’s
intuition about similarity between web pages would coincide with
the user’s mental model of page similarity. However, a limited
number of other colours could be useful for visualization of
bookmarks, cycles or extra domain categories, especially if the
user were able to choose the categories for binning.

3.4 Hierarchy
The hierarchy of the tree representing a user’s browsing paths is

indicated by both nesting of nodes in the treemap and the

saturation of the nodes’ backgrounds.
When the user is navigating, two situations occur which must

be handled in the tree structure. First, when the user types a URL
into the text field at the top of the browser in order to navigate to a
specific page, that event could be considered either another link
from whatever page is currently displayed or a new branch
emanating from the session root. For Unpackable Treemaps, I
decided that that constituted a new browsing thread, and thus
should be visualized as a new branch in the session tree. Second,
when a user navigates to a web page she has already visited, the
fact that the node is a multiple could be ignored, or the cycle
could be flagged with a visual cue, or the tree could be managed
so that multiple nodes don’t need to be maintained. I decided on a
combination of two of these strategies. When a web page is
accessed that has previously been accessed as an ancestor of the
current page, instead of adding the identical node as a new child,
the original node representing the page becomes current again,
and any further links pursued from the page will become new
branches emanating from the original node. Figure 6 illustrates
this strategy. Note that this cycle handling is different from the
case when two branches from the same ancestor each eventually
access the same page. In that case, if the child node being created
would be a sibling of an identical node (i.e. the multiples are both
immediate children of the same parent), the identical node is not
added as a new branch. Instead, the original node becomes the
current node and any navigation away from the page will be
represented as a branch out of the original node. However, when
the same page is accessed in two branches of the tree that share a
more distant ancestor, both multiples are allowed to remain in the
tree and there is no visual indication that the nodes create a cycle.

3.5 Images
The Unpackable Treemap web history graph features

screenshots of the web pages that some nodes represent. These
images are hypothesized to act as landmarks for the user and to be
easier to quickly scan than a web page's title. In order to present
the image most closely related to the image the user may
remember from the web page, I didn't want to distort the image at
all when scaling it. The danger in using undistorted thumbnail
screenshots of web pages was that because the children of a node
are nested inside the node, a thumbnail which didn't fill the whole
of a node's box would interfere with discerning the hierarchy of
children within the node. This is because an image which doesn't
fill the node but is wider or narrower than its children nodes will
create a ragged edge within the parent node and an image which
exactly aligns with a child node might appear to be another child
[Figure 3]. In an informal user poll of 7 grad students and
professionals between the ages of 22 and 37, each of whom use a
computer at least 20 hours per week, 6 of 7 preferred images
which aligned with their child nodes over images which were
wider or narrower, even when asked to try to discern the hierarchy
of nodes. One user's rationale was that "the neatness and
orderliness makes it easier to scan the window, and once you
understand how it's all organized, the aligned pictures don't
confuse you into thinking that they're separate boxes."

Unpackable Treemaps does have a function (disabled in the
release) to take screenshots of a user’s browsing on the fly,
instead of just relying on hard copies stored in the user’s
computer. For reasons discussed in the Implementation section, it
was unreasonable to use these during runtime. However, the
visualization implications of this function can be discussed. First,
a major concern was whether images for each node would create
too much visual clutter. Figure 3 is an example with every node
displaying a screenshot. Because of the limited use of
background color and because of the dynamic rolling up of nodes,
the images do not seem to clutter the screen too much. However,

as discussed, both the ragged edges caused by image scaling and
the alignment of images with a nodes children are potential
problems. Visual scanning of the hierarchy of nested nodes may
be disrupted because the image borders may be confused with
nested node borders. I hypothesize that this disruption is worth
the tax on visual scan due to the gains in large landmark memory
cues presented by the thumbnails.

3.6 Treemap Algorithm
Unpackable Treemaps uses a squarified treemap algorithm by

default, though it is possible to view the treemap with a strip
algorithm or even slice-and-dice. I chose squarified treemaps
because they offer the lowest aspect ratio, albeit without the
promise of ordered nodes [2]. Squarified treemaps offer the
benefits that: nodes are easier to select than the long skinny
rectangles that often result from other algorithms, and because the
nodes have aspect ratios approaching 1, they are more likely to be
able to legibly display images [3]. In the same informal user poll
of 7 grad students and professionals, all 7 found the squarified
algorithm more readable, when readability was defined as a
measure of ease of visual scanning [2]. I hypothesize that this
preference results because the squarified algorithm rarely creates
the long skinny rectangles which would form ragged borders
between images and child nodes and make labels disappear or get
cut off. However, for long-term use or for extended searching it
may become important to maintain the order of sessions (by date
or otherwise) and to avoid large layout changes when the tree is
altered. That way the user wouldn’t become disoriented between
searches or additions or deletions to the tree. In that case it has
been shown that strip algorithms offer more readability and that
users prefer them to squarified treemaps for searching tasks [2].
Strip algorithms first divide the tree into strips before dividing
those strips into rectangles, only dividing further if the aspect
ratios of the resulting rectangles is not worse than the aspect ratio
of the strip. This algorithm does not offer the lowest aspect ratios,
but the order of nodes is maintained and changes to the layout are
minimal even when the tree is altered [2].

3.7 Implementation
Unpackable Treemaps was implemented using Java 5 with

Swing and the libraries provided in the InfoVis Toolkit2, which is
a library of visualizations including tables, trees and treemaps
based on the Java 2D API. The InfoVis Toolkit provided
visualization panels and algorithms for treemaps as well as a
treemap control panel.

 The web browser was implemented using a JEditorPane
contained within a JScrollPane for the display of HTML and
several JButtons for navigating backwards, exiting and opening
the Unpackable Treemaps applications. The NewBrowser class
was written to handle input and output of the tree, maintenance of
the tree due to browsing, deletion or other options in the
Unpackable Treemaps window and dynamic assigning size
preferences for the nodes in the tree using a degree-of-interest
measure. Several small classes were written to assign colors,
labels and stored images to nodes. The history tree was input and
output from an XML file using InfoVis Toolkit’s XMLReader and
XMLWriter classes. The tree was stored as InfoVis Toolkit’s
DefaultTree. The treemap visualization was a modification of
InfoVis Toolkit’s ImageTreemapVisualization using a border
drawing class that extended LabeledBorderDrawer, with
functionality added for centering and aligning images,
dynamically resizing or expanding nodes, and packing and

2 http://ivtk.sourceforge.net/

unpacking nodes.
The screenshots were generated using Java’s Robot class.

However, due to time differences and long loading times for the
browser, accurate screenshots were not guaranteed. Often if a
user moved too quickly between pages (where too quickly was
approximately 12-15 seconds), the screenshot generated was not
the page it was supposed to be; it was often the page’s parent, or a
screenshot of the Unpackable Treemaps interface, because the
user had switched to that view while waiting for her page to load.
In addition to those problems, space constraints made it such that
images could not be saved between sessions.

4 SCENARIO OF USE
Suzie is browsing the web. She would like to record an

interactive history of her browsing, but finds the "Back" and
"Forward" lists to be too narrow in their scope, because they only
record linear progress. Her "History" tree simply groups pages by
their domains, which doesn't preserve either linearity or any other
progression, other than a loose chronological clustering by the last
day a page was viewed. She decides to try an interactive history
graphing application, namely Unpackable Treemaps.

To begin, she starts the Unpackable Treemap browser and
application suite. When she begins browsing, she is prompted for
a session name, which may later help her remember this session
by the task she seeks to perform in addition to the date. Suzie can
browse for as long as she likes, or not at all, before displaying the
Unpackable Treemap history graph. If she immediately opens the
history graph, she will see any other sessions saved in her history
file as well as her current session, which will have the focus in the
treemap, indicated by its size. The first page she has loaded is
displayed as the first node in the current session. Because there
are no other nodes, this page can take up the whole of the session's
allotted node space. As she follows hyperlinks in her browser,
when she redisplays the Treemap each link will be represented by
a new node nested within its parent node. If Suzie visits more
pages than can be legibly displayed, older nodes will be "rolled
up", sliding under newer nodes above them which will expand
[Figures 1 & 2]. Suzie can click any of the rolled-up nodes
remaining to choose a menu item that will re-expand the hidden
nodes. Suzie can also manually choose to pack a certain node,
using the popup menu that displays when she left-clicks on a
node. This results in a “red” pack, where the child node of the
packed node is allowed to use the space that the packed node
previously occupied, and is coloured red to indicate that it is
covering its parent. Suzie can use the popup menu and choose
“Unpack Parent” to display the red node’s parent. At that time,
the formerly red child node is no longer red, but the parent may be
red if it is covering a packed parent. Children nodes may be
packed away as well without manually choosing so. In that case,
there is no visualization cue to indicate that the last node to be
displayed in a nest is a parent node. However, zooming in on leaf
nodes will expand any packed children.

If Suzie ever backtracks to a page she has visited before, and
then follows a different hyperlink to the next page she'll browse,
the treemap will be updated with another series of nodes coming
from the revisited page [Figure 5]. Cycles in Suzie's browsing will
be handled by returning to the first instance of the revisited page.
For example, if Suzie visits a web page that has the same URL as
one of its ancestors, instead of nesting the "new" node inside the
parent, the identical ancestor will become the current node, and
any links Suzie follows from that node will become another series
of nodes starting from the ancestor. Similarly, if Suzie ever
navigates to a node which has the same URL as an immediate
sibling (another node which is linked directly from the current
node's parent), instead of adding a copy of the same page as a new
sibling node, the first instance of the page becomes the current

node and any links Suzie follows will become children of that
node. When Suzie visits a URL by entering it into the text field at
the top of the browser window, that page will become a new node
that is a child of the session, not of any other URL.

When Suzie wants to see more of a node in her treemap, she
can click the "expand" or "unpack" menu item for that node,
depending on whether the node is visible. "Expand" rolls a node
out more from under its children so that more of the node can be
seen, which is important when the node displays a thumbnail of
the web page it represents. "Unpack Parent" forces at least one
hidden node to be displayed. Suzie can also zoom in on any node
for more detail by choosing the menu item "Zoom". After
zooming she can return to the global view by clicking her right
mouse button anywhere in the visualization window.

To allow Suzie the same navigation benefits as a standard web
history widget, several features are included. When Suzie wishes
to view a page in her web browser, she can choose to "Set Focus"
on that node, which will bring the node into focus in the history
map and will also display the page in her browser. If she begins
browsing again her navigation will start from that node. Suzie can
also select a node to populate an information box with more
information about the web page in the control panel adjacent to
the visualization. Finally, Suzie can manage her history easily by
choosing to delete any subtrees or sessions which she no longer
needs.

Table 1. Menu functions for Unpackable Treemaps

Menu Item Function
Zoom Forces this node and its children (or this

node and its parent if the node is a leaf) to
fill the visualization window.

Set Focus Make this node the focus, which makes it
and its ancestors and siblings larger than all
other nodes, and brings up the selected
node’s URL in the web browser

Roll Up Allow the node to show the minimum
content.

Expand Force this node to show more of its content.
Unpack Parent Applied to a red node, this slides out the

node’s hidden parent so it is visible.
Pack Pack this node with a “red” pack, sliding it

under its child so it is invisible, while the
child becomes red.

Set Packable Toggle the permission for whether this node
can be packed. Fails when permission
should not be granted, such as for tree root
and session roots.

Show All Show every node in the tree, assigning to
each node the minimum size

Delete Delete the subtree that begins with the
selected node.

5 EVALUATION
I used Unpackable Treemaps throughout its development and

tested the finished product with my own typical browsing sessions
as well as a few with even heavier loads. I determined that
Unpackable Treemaps successfully scales to approximately 200
nodes when it uses a full screen and nodes are forced to remain

large enough to display labels. Bearing in mind that the session
structure is still legible in this mode, Unpackable Treemaps
seems more successful than a web browser’s typical history
mechanism which can show 30-40 nodes in full screen mode, with
none of the browsing path structure retained. When nodes are
allowed to overlap such that the borders are at their minimum
size, more than a thousand nodes and the names of the sessions
that contain them can be seen. However, if the screen is
completely stuffed such that there are no labels visible (except
session labels), only the structure of sessions can be discerned. In
this case it would be helpful to have colours which can be
assigned to the nodes to convey information about their domain.

Beyond scalability, I will evaluate Unpackable Treemaps in
terms of the tasks that I planned for the tool to perform. At the
start of this project, I had 4 main goals: 1) to legibly display web
page information in the nodes of a treemap 2) to offer an
interactive display of the treemaps coupled with a browser 3) to
handle cycles in a user’s browsing and 4) to add packing and
unpacking functionality to treemaps (dynamically if possible).

5.1.1 Legible Display of Web Page Information
Unpackable Treemaps displays the title of a web page and a

thumbnail image of the top of the page for each node which
possesses these attributes, as well as a background colour which
can denote information about the domain, packing, or depth of the
node. In informal sample sessions with 7 grad students and
professionals who have ample web-browsing experience, the node
information was sufficient for a user to pick out a previously
visited node from the history display with confidence. The test
users’ opinion was that the addition of the screenshot made it
easier than searching only on a title to remember whether a node
was the page for which they were searching.

5.1.2 Interactivity
The treemap display is quite interactive, allowing the user to re-

open previously visited pages in the browser, prune the tree, and
sort and filter the tree. Tight coupling whereby navigation in the
browser window automatically updated the Unpackable Treemaps
display would be more preferable than the one way coupling
currently offered.

5.1.3 Cycle Handling
My original intent in handling cycles was to visually flag that a

cycle had occurred by marking nodes which were multiples.
However, I found this distracting; using a background colour to
indicate multiples made the multiples far too prominent in the
display and using the same colour for all multiples, i.e. multiples
of different pages, was confusing. A glyph added too much
clutter when labels and images were being displayed. Moreover,
handling the cycles as described in Section 3.4, such that if a user
navigates to a copy of an ancestor page the links he follows from
the page become new branches from the ancestor, depicts actual
browsing more accurately. For example, if I begin browsing a
web site from its main page, and then at some point use the site’s
“Home” link to redisplay the main page, my mental model of the
browsing session is such that I have returned to the original page.
If the tree didn’t record this, or recorded it only by flagging that
the page was a multiple, while continuing along the same branch,
it would conflict with my mental model and prove confusing
when I scanned the tree. Another potential solution was to add
some visual flag to the leaf node which was the last node visited
before returning to the original node, as shown in Figure 6, but
this was not deemed helpful by me or early testers and, as
mentioned above, only added clutter.

5.1.4 Packing and Unpacking
I added functionality to existing treemaps which allows nested

nodes to be dynamically aggregated such that the borders of
nested nodes vary according the the current view, and manually
aggregated in a manner similar to regular treemaps, which hide all
parent nodes. The difference is that in Unpackable Treemaps
instead of being presented with a static view of either nested
treemaps or regular treemaps the user is given the power to decide
how she would like to view the treemap and even to view
different portions of the treemap with different formats.
Moreover, manual and automatic aggregation allow for views
which range from regular treemap views (with all parents hidden)
to regular nested treemaps, to a blown-up nested treemap with
large portions of the parent nodes revealed, as well as values in
between these views.

5.2 Strengths
Unpackable Treemaps is a neat, organized way to view web

history. Its 3 main strengths are: it is space-saving while
preserving context, it preserves the structure of session histories,
and allows the user to return to previous sessions and continue
browsing, and finally, it eases the cognitive load of searching for
previously-visited web pages.

5.2.1 Space-Saving
Nested treemaps are themselves space-saving formats. They

allow large trees to be visualized with a minimum of screen space,
thus preserving more of the context within the visual panel.
Because of their compactness, they are easy to quickly visually
scan. They seem to be ideal for visualizing web history as they
can show the whole of a browsing session in a tight space, and
give more focus to leaf nodes, which are likely to be more
important to the user than nodes from early in a thread, which
may be home pages or search pages which are familiar to the user
and only serve as springboards to new information.

5.2.2 Preserves Session History
Just like many other graphical web history visualizations,

Unpackable Treemaps provides what traditional web browser
history mechanisms lack: history preserved by session. This
allows the user to scan her history in a way that aligns with her
mental model of browsing. It also solves the problem that with
traditional history a user loses any record of multiple visits to the
same page and must try to remember visited pages by their
domain.

5.2.3 Eases Cognitive Load
Screenshot images ease cognitive load because the user does

not have to try to recall pages solely based on their title or URL.
In a release of Unpackable Treemaps coupled with a commercial
website, the thumbnail images could be provided by a source such
as thumbshots.org3, an online provider of free web page
screenshots, which would guarantee accuracy of images as well as
higher resolution.

5.3 Weaknesses
Many of this application's weaknesses spring from the short

time frame in which it was constructed. Given more time, I would
add several tweaks to existing features. First, I would
dynamically alter the saturation of the red colour on “red” packs
to indicate how many ancestors are packed behind a child.
Second, I would do more extensive testing to be sure that the user
can’t “break” the tree with packing, unpacking, setting focus, etc.

3 http://www.thumbshots.org

Probably because I added too many features too fast, the suite is
not as robust as it should be.

Other than these quickly-fixable problems, the application has 3
main weaknesses: First, it should be coupled with a much more
functional browser. Second, it needs smooth animation to
preserve the user’s orientation. Third, packing is not automatic,
which makes visualization of more than 250 nodes problematic.

5.3.1 Limited Browser Functionality
The web browser provided with Unpackable Treemaps is not

fully functional. Many types of web page, including those with
JavaScript, are not able to be visited. That was a hindrance to
testing the module and it leaves the application suite unusable
except as a research tool. In order for real users to try Unpackable
Treemaps, at the very least some code must be written to capture
real session histories from a fully functioning web browser. Even
more work would be required to provide tight coupling between
the browser and Unpackable Treemaps.

5.3.2 Animation
Even when the strip treemap algorithm is chosen in the control

panel, changes to the tree can result in fairly large changes to the
treemap layout. If these changes were animated it would be easier
for the user to maintain focus on the node she is currently
interested as well as the context of the rest of the history.

5.3.3 Lack of Automatic Packing
When the number of nodes visualized becomes larger than

about 250, if the user chooses to “show all” nodes with equal
weight given to each node, most nodes will be packed enough that
their labels are not visible. In this case, the treemap doesn’t
actually provide either focus or context, other than an idea of the
structure of each session’s browsing paths.

However, if some of the nodes were packed with a “red” pack,
which would occlude parent nodes and gain space for children,
then the remaining nodes would be able to expand and show more
of their information. An algorithm should be devised to “red”
pack older nodes or nodes with are closer to the session roots or,
in the case where a focus has been set, nodes which are far away
from the focus by some distance measure such as the date of
browsing. As has been discussed in Section 3.2, packing nodes is
an aggregation that is almost always going to group similar nodes.
The major difficulty, of course, is deciding how the algorithm will
choose which nodes to pack.

5.4 Lessons Learned
Over the course of this project I learned several things:

• It is just as easy to err on the side of too little colour

as too much. Colour could have been added to
distinguish more types of domains as well as
favorites.

• Packing is a bigger problem than simply the graphics

end. Deciding on degree of interest measures and
choosing when packing was allowed was hard.

• Users are willing to do some work if they believe a

tool to be useful, but it’s very easy to cross the line
into too much work.

• Using a toolkit to build from is useful when the time-

frame is short, but the existing framework may hinder
innovative efforts and stifle creativity.

• Before settling on an existing toolkit to utilize, one

should check and make sure that it is well-
documented.

• Milestones with dates attached are very important.

Otherwise one can become mired in deliberations
over a minor problem, leaving little time for more
important problems ahead.

6 FUTURE WORK
There are many features of Unpackable Treemaps which could

be improved or added to make it a more effective tool for web
history visualization. Several have already been addressed in
Section 5.3. The most important of these is integration into a
mainstream web browser. In addition to the obvious benefits that
Unpackable Treemaps would be available to real users and have
access to real data, the additional gain would be less infrastructure
required in Unpackable Treemaps for dealing with web
navigation.

One further improvement which would add valuable
functionality to the tool is searching. Currently the user can sort
or filter the displayed treemap by features of the nodes such as
date, name, and depth, but there is no method that allows the user
to search by any of these attributes. That feature would prove
helpful when the user remembers something about the name or
domain of the web page he’s looking for, because instead of
searching all of the World Wide Web he could search only those
sites he knows he’s visited. Google has recently introduced a new
product called Google Desktop Search4 which provides this
functionality, in addition to allowing the user to search his
personal documents and emails.

It may also be useful to devote a background colour to
identifying the user’s favorites. Because these are already
landmarks which the user often uses to orient himself, like the
home page, making it a landmark in the treemap could help him
quickly identify useful sections of the graph.

Finally, it can be argued that the nesting used in Unpackable
Treemaps wastes screen space because the bottom and right
borders are small enough that no additional information about the
node can be conveyed there, and showing only top and left
borders would be adequate for the user to discern the hierarchy of
the nodes. However, testers rejected this format in early
prototypes as hard to read. Figure 5 is an example of this format.
It remains as a possible testing area to determine whether users
would accept this form of nesting and whether it makes visual
scan more difficult.

7 CONCLUSION
I have developed the Unpackable Treemaps web history

visualization tool. This tool is a dynamic visualization of a web
browser’s history, maintained by session. I have presented a
scenario of its use which demonstrates is usefulness. I believe
that with future work it could be a very effective aid to web
browsers who wish to explore their browsing history.

REFERENCE
Benjamin B. Bederson, James D. Hollan, Jason Stewart, David

Rogers, David Vick, Laura Ring, Eric Grose, and Chris Forsythe, “A
Zooming Web Browser”, Human Factors and Web Development,
Eds.: C. Forsythe, J. Ratner, and E. Grose, Lawrence Earlbaum,

New Jersey, 1998.

4 http://desktop.google.com/

Benjamin B. Bederson, Ben Shneiderman, and Martin Wattenberg,
"Ordered and Quantum Treemaps: Making Effective Use of 2D
Space to Display Hierarchies", ACM Transactions on Graphics

(TOG), 21(4), pp. 833-854, October 2002.
Mark Bruls, Kees Huizing, and Jarke J. van Wijk, "Squarified

Treemaps", Proc. of Joint Eurographics and IEEE TCVG Symp. on
Visualization (TCVG 2000), IEEE Press, pp. 33-42, 2000.

Lara D. Catledge and James E. Pitkow, "Characterizing Browsing
Strategies in the World Wide Web", Computer Networks and ISDN

Systems 27, Elsevier Science, 1995.
Peter Doemel, “WebMap - A Graphical Hypertext Navigation Tool”,
2nd International Conference on the World-Wide Web, Chicago, IL,

pp. 785-789, 1994.
R. Gandhi, G. Kumar, B. Bederson, and B. Shneiderman, "Domain

Name Based Visualization of Web Histories in a Zoomable User
Interface", Proceedings of the Second International Workshop on
Web-based Information Visualization (WebVis'00), pp. 591-598,

Sep. 2000.
Matthias Mayer and Benjamin B. Bederson, "Browsing Icons: A
Task-Based Approach for a Visual Web History", HCIL-200119,

CS-TR-4308, UMIACS-TR-2001-85, HCI Lab, University of
Maryland, Maryland, USA, 2001.

Ben Shneiderman, "Tree visualization with tree-maps: A 2-d space-
filling approach", ACM Transactions on Graphics 11, pp. 92-99,

1992.
Frederic Vernier and Laurence Nigay, "Modifiable Treemaps

Containing Variable Shaped Units", Extended Abstracts of the IEEE
Information Visualization, 2000.

Romain Zeiliger, Claire Belisle, and Teresa Cerratto, "Implementing
a Constructivist Approach to Web Navigation Support",

Proceedings of the ED-MEDIA'99 Conference, Eds. B. Collis and
R. Oliver, AACE, Seattle, Wa., USA, 1999.

Figure 1. The Unpackable Treemaps application is displayed with a thread emanating from www.cnn.com as the focus. The popup menu is
displayed with the options the user has for manipulating this node.

Figure 2. The treemap visual panel is displayed with the “Show All” function chosen. All nodes have equal weight. As shown, the amount of
space taken up by nodes which are completely rolled up (with no label showing) and when partially rolled up (only the labels showing), is such

that about 200 nodes can be shown partially rolled up when the panel is in full-screen mode, and something on the order of one thousand
nodes can be shown in the fully rolled-up mode.

Figure 3. A zoomed-in view of nodes displaying screen shots.

Figure 4. The same images from figure 3 with one node packed away using a “red” pack.

Figure 5. An example of Unpackable Treemaps when only the top and left sides of nodes are indented to indicate hierarchy.

Figure 6. An example where the user has pursued two different links from the same ancestor, creating two branches. The blue cross glyph
was a prototype for indicating cycles.

