

HEX: Visualizing HEterogeneous XML Document Information Retrieval

534B Project
Matt Williams

46629960

1.0 Introduction

Searching for information on the Web’s immense document collection lends itself to
applying information visualization techniques as the document relevancy decisions can
greatly benefit from involving the user in the loop. Visualization has been integrated in a
variety of standard HTML Web documents but has yet to be found in systems searching
through structured documents such as XML documents. The XML document structure
provides both additional data organization and data description to standard Web
documents and as XML becomes more pervasive, the need to take advantage of the
XML’s additional structure grows. However, the influx of the XML format also adds new
challenges to Web IR systems over and above the problems of searching though massive
collections of diverse content. The XML format provides great structural freedom and will
produce great heterogeneity in document structure across different collections on the
Web. XML IR systems that search across collections from multiple systems must account
for diverse document structures. The goal of the HEX system presented in this paper is to
improve information retrieval efficiency in large collections of diversely structured
documents by applying multiple information visualization solutions.

Section 1 introduces the challenges presented by XML-IR that motivate the present
system. Section 2 describes related research that has influenced the project. Section 3
describes the framework of the HEX system including the data model, the user interface,
and the search operations. The paper finishes with an evaluation of the system,
conclusion and a description of interesting future endeavors related to the HEX project.

1.1 Motivation
XML, short for eXtensible Markup Language, is extensible in the sense that it is not limited
to a predefined language. Instead, XML allows any language for describing the data that
is contained within. This offers the XML author great freedom in creating and organizing
the data to fit individual needs. This is a great benefit for designers of specific systems
that interchange data for a specific purpose (e.g. interchanging data on music collection
catalogs) but it becomes a problem when trying to integrate or search for data across a
number of separately designed systems. The freedom that XML offers can produce many
various structures that all represent similar information. In many cases the designer must
make arbitrary decisions about the number of elements, the particular element names,
and the hierarchical structure of the elements. Figure 1 illustrates how two different
structures can describe collections of musical CDs.

<ARTIST>
 <NAME> Beatles
 </NAME>
 <CDCOLLECTION>
 <CD>
 <TITLE> Yellow Submarine
 </TITLE>
 <SONG> Yellow Submarine
 </SONG>
 <SONG>Help
 </SONG>
 ...
 </CD>
 ...
 </CDCOLLECTION>
<ARTIST>

<CDCOLLECTION>
 <CD>
 <ARTISTNAME> Beatles
 <ARTISTNAME>
 <TITLE> Yellow Submarine
 </TITLE>
 <SONG> Yellow Submarine
 </SONG>
 <SONG>Help
 </SONG>
 ...
 </CD>
 ...
</CDCOLLECTION>

Figure 1.

As the number of XML documents on the Internet grows, the interest in searching for data
over large collections of heterogeneous XML data will mount. Moreover, due to the
arbitrary structure design described above, the heterogeneity of the structures of XML
documents with also increase dramatically.

The difficulty of information retrieval in such diverse data structures can be tackled in two
ways. There exists a movement to reorganize data across systems into fewer structures,
which is intended to reduce the challenge of diverse data structures (IEEE, 2001).
However, the reorganization of such an extremely large data collection (i.e. the Web) may
either be impossible or a very lengthy process. The alternative tries to cope with the
heterogeneity by developing information retrieval systems with this diversity in mind that
involve the user to help locate relevant documents. It is this second approach that
motivates the HEX system presented in this paper. HEX improves information retrieval
efficiency by organizing the results by similarity and applying various interactive
visualization techniques to help the user navigate the results.

1.2 Contributions
Visualizing XML Document Search
To tackle the difficulty of navigation through an immense, highly diverse data set, the HEX
system applies multiple information visualization techniques, including pan and zoom
navigation, hierarchical structure visualizations, and large dataset visualization.

Overcoming Heterogeneity
Although a some information retrieval systems have been developed with the intention of
handling diverse document structure (e.g. Theobald and Weikum, 2000; Fuhr and
Grossjohann, 2000), none handle extremely divergent structures that arise from a simple
arbitrary choice such as /AUTHOR/BOOK/PUBLISHER vs.
/PUBLISHER/AUTHOR/BOOK. In these other systems, such structure differences would
require the user have some a priori knowledge of the various structures to search
effectively.

Iterative Search and Similarity
HEX attempts to handle such heterogeneity by treating the element names as a flat
structure. Such a model may relax queries so much to the extent that unwanted data from
a variety of domains may be returned. HEX attempts handle this difficulty in a number of
ways such as clustering by similarity and iterative drill down methods. These methods will
be described further in the later sections.

2.0 Related Work

2.1 Information Retrieval Visualization
As in the present system, there are numerous existing systems that group information
retrieval results by similarity. The systems that categorize the results into folders (hearst
and Pedersen, 1996; NorthernLight) are forced to specify the number of categories and
the thresholds between the categories. To overcome the difficulties of categorization
some systems provide a visualization of the results in 2 or 3 dimensional, thus allowing
the user to visually compute the clusters of similarity. In 2001, Roussinov and Chen used
Kohonen’s self-organizing maps to organize and display Web search results.

Alternatively, Leuski and Allan (2000) developed the Lighthouse system that applied multi-
dimensional scaling (MDS) to compute 2 or 3-dimensional similarity of web search results.
The galaxies (Wise et al, 1994) system, in which documents are represented as stars in
the galaxy of the document collection, was the first to visualize document similarity using
MDS. To my knowledge, no system applies such techniques in XML or other structured
document domains.

The present system adds to the galaxy representation by including abstractions that
encode the relative node size of the documents and the node relevancy of the documents.
Similar abstractions of tree nodes have been found in the SpaceTree visualization
technique (Plaisant et al., 2002). This system aggregates subtrees into single triangles
that represent the number nodes and the height of a subtree.

The present system also offers dynamic query capabilities first presented by Ahlberg and
Shneiderman (1994). Dynamic query systems offer interface widgets such as sliders to
formulate queries that dynamically impact the visualization of the result set. The HEX
system offers dynamic queries on the set of retrieved results to drill down relevant
subsets.

The interactive interface of the HEX system takes advantage of the Jazz Toolkit
(Bederson et al, 2000) to provide pan and zoom navigational capabilities. The Jazz
approach involves the building of a scene-graph of nodes and positioning camera views of
the scene, an approach typically seen in 3-D toolkits. This approach offers users the
focus + context view much hailed in the information visualization community (e.g.
Shneiderman, 1996).

In addition to the visual navigation techniques, the current system also takes advantage of
the TreeMap visualization technique (Shniederman, 1992) to organize the intra-document
results. TreeMaps provide a compact representation of hierarchical data and an intuitive
method for visualizing weight or rank statistics.

2.2 XML Information Retrieval
Both the XXL (Theobald and Wiekum, 2000) and the XIRQL (Fuhr and Grossjohann,
2000) offer IR statistics and ranked retrieval to XML search. The former focuses on
adding similarity operator ‘~’ that expands the query to allow terms that are similar to
terms. It also provides for the ‘#’ operator as a placeholder for zero or more element
nodes. For example, the query (zoos.#.~region.Canada ~tiger) would match
(zoos.public.country.Canada lion) if ‘lion’ was deemed similar to ‘tiger’ and ‘country’ to
‘region’. Like the HEX system presented here, the operators ‘~’ and ‘#’ in the XXL system
account for both heterogeneity of data and lack of schema, however the XXL similarity
computations cannot account for many arbitrary differences in structure (e.g.
/BOOK/PUBLISHER/AUTHOR vs. /AUTHOR/PULISHER/BOOK.

The XIRQL system focuses on adapting IR ranking statistics (i.e. tf*idf) to fit hierarchical
data. They propose computing stats for only specially selected index elements. The
authors also propose a weighting scheme for finding the proper level of specificity of result
to return to the user if no structure is provided in the query. They use augmentation
weights to calculate the influence on lower index matches with higher indices. For
example, if a query searching for ‘lion’ matches several sibling index elements then this
will influence the weighting of the parent index element and thus the parent may be
returned with a higher rank. The present system uses the TreeMap visualization to
represent result specificity and structure augmentation.

The XIRQL system also provides predicates that match and provide weights stats for
terms across data types, vague equality, or inequalities. It does not provide the ability
match based on similar structure and also requires the specification of an extended DTD
and thus may not be useful in large heterogeneous environments.

2.3 Similarity
The similarity between documents in HEX is computed using the vector space model
(McGill, 1983). The vector space model has been applied to cluster vectors of keywords
in HTML documents for Web IR tasks (Leuski, 2000; Hearst and Pederson, 1996) but not
previously been applied to the structure of XML documents. Intuitively, the application of
similarity between document structure elements is more reasonable than the previous use
of content keywords as the structure elements are purposefully chosen to represent the
data that they contain; however, user studies are needed to validate this conclusion. As
described above, the HEX system uses multidimensional scaling to reduce the
dimensionality to 2 dimensions so that the similarity can be presented visually.

3.0 The HEX System

3.1 The HEX Data Model
Element Index
For each element across all documents an entry in the Element index will hold all NodeIds
that hold the corresponding element name. This enables quick access to all documents
(or Nodes) containing a specified element – an important operation in the HEX system.
For example, to find all documents in the collection containing the element AUTHOR, a
single index lookup will be required. In the present prototype system the Element Index is
offered to the user in the user interface, however, in the case of large data collections this
interface would become unwieldy. Future research will investigate how to organize or
cluster the index for user interface in large collections.

Keyword Index
Similar to the Element Index, for each Keyword in the collection, an entry in the Keyword
Index will hold the DocId/NodeIds/TermFreq that contain the corresponding keyword. The
TermFreq score is used to weight the result for ranking.

Document Location Index
For each NodeId, a URL location is entered in the Location Index to find the content if
requested.

Element Freq Vector
For each document, a flattened Vector of Element Names and ElemFreq weights will be
stored to allow efficient computation of document similarity. The ElemFreq weight (as well
as the TermFreq in the Keyword Index) can simply be the number of occurrences of the
element in the document or can be weightings that have shown success in standard Web
document IR research such as Okapi’s tf score (Robertson et al., 1996):

• (tf = tf/[tf +0.5 +1.5*[docLen/aveLen]])

3.2 Visual Interface
Inter-Document Results
All documents in the currently retrieved collection are represented by circles with
diameters proportional to the number of element nodes in the document (with a
minimum and maximum size to ensure visibility). The circles are visually
organized based on element vector similarity (See Figure 3). In the current
implementation the similarity is calculated using a multidimensional scaling
approach so that the dimensionality of the similarity distance can be reduced to
two dimensions for graphical presentation (Morrison et al., 2002). An alternative
would be to compute full dimensional similarity distance and present the data in
categories (Hearst and Pederson, 1996; Leuski and Croft, 1996). To reiterate the
point, because the similarity is calculated based on the flat set of element names,
heterogeneous structured documents that contain similar data will be clustered
together in the display.

Figure 3.

The document icons are displayed within a zoomable interface (Benderson et al., 2000) to
allow the user to interactively explore the document similarity.

Dynamic Queries
Documents that match the query that are in the currently displayed collection will enclose
red circles that mark the match. The diameter of the red circle corresponds to the number
of element nodes that match the query. The resulting icon represents the proportion
element nodes in the document match the query. For example, figure 4 shows 3
documents that contain a large proportion of nodes that match the query while the other
two contain no matches.

Figure 4.

Drill Down
The search operations described below operate only on the collection of documents
retained after the most recently execution of the Drill-Down operation. The Drill-Down
operation retains only the documents that either match the most recent query or are
currently selected by the user. The second criterion (selected) allows users to retain
certain documents by selecting them in with the mouse pointer even if they did not match
the most recent query. The similarity distance between the documents is recomputed and
the icons are translated to the new positions. Figure 4 shows the retained results from the
Drill-Down operation on Figure 3 after the user selects a couple more documents.

Intra-Document Results
If the user chooses a document (or node) from the currently returned query results, HEX
will present the user a visual representation of the resulting tree using Shneiderman’s
(1992) TreeMap visualization technique shown in Figure 5. The tree contains only the
nodes in the document that match the query as well as any ancestor nodes. An alternative
would be to build only the smallest subtree that contains all of the result nodes within each
document, but adding the full path to the root of the tree provides useful context for the
user and requires minimal processing. In the visualization the weight (rank) of the query
match is represented by both the brightness of the colour and by the size of the cell. The
TreeMap is the interface that allows access to the actual content of the documents/nodes.
If the user chooses a node (mouse double click) then the XML text content will appear in a
text browser (Figure 6).

Figure 5.

Figure 6.

The content box shown after the user chooses
the TITLE element node from the TreeMap in
Figure 5.

Ranking
On top of the standard IR ranking based on term frequency and inverse document
frequency (not currently implemented) the HEX system weights results by the number of
ancestor elements that appear in the users Element Index query (described below). For
example, given two nodes /BOOK/PUBLISHER/AUTHOR/FIRSTNAME/x and
/BOOK/AUTHOR/y, if the user searched for BOOK:PUBLISHER:FIRSTNAME, the node x
would be ranked higher than y because it matches 3 query element names compared to 2
for y. Future research will focus on how to best integrate this weighting with the IR stats.

3.3 Search Operations
Since the Hex system is intended for large document collections, the users will most likely
have a large variance in skill for developing queries. The basic operations of HEX are
kept simple and intuitive. To effectively search through large data collections, the search
operations are intended to be used as part of an iterative drill-down process.

Retrieval Mode
The user can choose to search in Document Mode in the case that full documents are to
be returned by the query or Node Mode if all node matches are to be returned

Element Search (Match Any)
The element search allows the user to enter a list of Element names to search for. This
operation has match-any semantics (union) so that any document (or node) that contains
any one or more of the elements in the list will be returned in the result. The element
search is the key to HEX’s ability to excel with heterogeneous collections as it allows
searching based on a subset of the element names without knowing or caring about the
overall structure of the data. For example you can search for AUTHOR and BOOK
without knowing about any document schema or even their hierarchical relationship to
each other (AUTHOR/BOOK or BOOK/AUTHOR or AUTHOR/PUBLISHER/BOOK are all
treated equal).

Keyword Search (Match All)
The keyword search allows the user to search for documents (or nodes) that have nodes
that contain all of the keywords listed by the user. Users that are comfortable with today’s
popular Web search engine should find the match all semantics (intersection) of the
keyword search intuitive. When issuing a query that contains both a list of elements and
list of keywords the system will return all documents (or nodes) that contain all of the
keywords in a node that lies under one or more of the elements in the element query

Other Search Operations
The Element Search (Match Any), the Keyword Search (Match all) and their combination
are the fundamental search operations for the Hex system. Similar to popular Web
search engines today, further operations (such as Element Search (Match All) and
Keyword Search (Match Any)) could be offered in an advanced version of the interface.

4.0 Evaluation
The current prototype offers an intuitive, visual environment to drill down query answers in
large collections of heterogeneous XML documents.

Although the speed of the query evaluation is not overly obtrusive, the current
implementation has two speed bottlenecks. The first is an artifact of the prototype system

since the necessary data structures for query computation and similarity calculation need
to be built at run-time. This time delay should be completely removed in a system
containing a preprocessor (crawler) to fill the data structures described in section 3.1.

The second bottleneck occurs during the similarity processing. The current calculation
surpasses user patience (20 seconds) if the result set is larger than 100 documents (with
element vector lengths ~50). The current approach using the spring model
multidimensional scaling (MDS) is O(N2) but new research in MDS suggests that this can
be reduced to O(N root(N)) with an approach that is at least as effective (Morrison et
al.,2002). This has proven to be approximately 3 times faster in test implementations and
should be able to calculate similarity for any reasonable result set size in a reasonable
time. Further studies in using a variety of test data collections are required to formalize
these timings. The effectiveness of the similarity calculations can also be investigated by
comparing the similarity distances calculated using the MDS approaches with the full
dimensional distance.

Once similarity is calculated on a particular drilled down document set and the resulting
set if organized on screen, queries of the result set can be computed with no noticeable
delay.

5.0 Conclusions
This paper presented HEX, a search interface that applies research taken from
information visualization and traditional IR techniques to the XML IR domain. The first
prototype provides evidence that the approach may provide a useful method to effectively
search through large collections of heterogeneous documents. To counter-act the loss of
precision by flattening out the element structure, results are organized by element weight
similarity, which provides an intuitive organization of results for the user. Extensions to
the current prototype implementation are described in the next section. Further evaluation
and user testing is also required.

6.0 Future Work
The prototype system is implemented as an interface to the eXist Native XML Database.
To be effective for large collections, the data structures should be filled during a
preprocessing stage using “crawler” software to scan the Web for XML documents similar
to today’s popular search engines. It would be trivial to fill the structures outlined in the
Section 3.1, but one interesting area of research would be to investigate what could be
precomputed to improve the similarity stage. For example, could similarity for documents
that commonly appear together in a search be precomputed?

Currently, dynamic queries are only offered for the inter-document results by highlighting
the documents that match the current query. This can be extended to allow the user
dynamic filtering of the nodes presented in the intra-document TreeMap representation.
With this addition, the user would be able to adjust the element and keyword queries and
view the effect on the TreeMap in real-time.

As mentioned earlier, the element index that is currently provided to the user in the
interface would become unwieldy in large collections. One simple solution would be to
simply remove the Element Index from the interface and require that the user enter the
element names in a blank text field similar to the keyword search. However, the Element
index valuable in providing meta-information as to the content of the collection, as well as
guidance as to which terms would be useful in a search. Therefore, research into how to

best aggregate the Index for the interface should improve both the user interface and the
retrieved results. The work by Theobald and Weikum, 2000, in which the element names
are organized by similarity in an ontology using the WordNet open thesaurus may provide
some guidance in this area.

Also mentioned in the previous sections, the efficiency of the dimension reducing MDS
similarity computation can be improved and various other full dimensional similarity
techniques could be explored.

Finally, the interface could be polished by adding a history of previous queries and
allowing combinations of multiple queries using intersection or union. Furthermore, the
various result windows (i.e. the collection of documents, the TreeMap document
visualization, and the text content browser) could be integrated so that the zoomable
interface could be used to navigate through the intra-document nodes and the text content
instead of the additional windows offered in the current implementation.

Appendix A

Implementation References
The development of the HEX system involved integrating code and ideas from a variety of
open source systems:

• The native XML database eXist (http://exist-db.org/) was used as the test XML
storage upon which the HEX system was built.

• Components from the XMLdbGUI system was used for XML parsing
(http://titanium.dstc.edu.au/xml/xmldbgui/index.shtml)

• Parts from an open source system fsmvis (http://www.dcs.gla.ac.uk/~morrisaj) was
used to provide the multidimensonal scaling and fast multidimensional scaling
engine for HEX.

• The Piccolo Zoomable Interface library (www.cs.umd.edu/hcil/jazz) was integrated
to offer the graphical exploration of the query results

• The Intra-document results are presented using the TreeMap visualization
technique first presented by Shneiderman in 1991, and implemented at
(http://treemap.sourceforge.net)

References
C. Ahlberg and B. Shneiderman. Visual information seeking: Tight coupling of dynamic
query filters with starfield displays, In Proceedings of SIGCHI 1994, pages 313-317.

S. Amer-Yahia, S. Cho, and D. Srivastava. Tree Pattern Relaxation, In EDBT, Prague,
Czech Republic, Mar. 2002.

Bederson, B. B., Meyer, J., & Good, L. (2000). Jazz: An Extensible Zoomable User
Interface Graphics Toolkit in Java, In Proceedings of User Interface and Software
Technology (UIST 2000) ACM Press, (in press).
http://citeseer.nj.nec.com/bederson00jazz.html

N. Fuhr and K. Grossjohann. XIRQL - An Extension of XQL for Information Retrieval, In
ACM SIGIR, New Orleans, LA, Sep. 2001.

P. Ganesan, H. Garcia-Molina, and J. Widom. Exploiting Hierarchical Domain Structure to
Compute Similarity. Technical report, Stanford Computer Science Dept. 2001-27, Jun.
2001. http://dbpubs.stanford.edu/pub/2001-27.

Hearst and Pederson. Reexamining the cluster hypothesis: Scatter/gather on retrieval
results. In Proceedings of ACM SIGIR, pages 76-84, August 1996.

IEEE CS Data Engineering Bulletin Vol. 25 No. 1, Special Issue on Organizing
and Discovering the Semantic Web, March 2002.

H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K. Thompson. TAX: A Tree
Algebra for XML, In Int’l Workshop on Data Bases and Programming Languages (DBPL),
Frascati, Rome, Sep. 2001.

A. Leuski and J. Allan. Lighthouse: Showing the way to relevant information. In
Proceedings of IEEE Symposium on Information Visualization 2000 (InfoVis 2000), pages
125-130, 2000.

A. Leuski and B. Croft. An evaluation of techniques for clustering search results.
Technical Report IR-76. Department of Computer Science, University of Massachusetts,
Amherst, 1996.

M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

W. Meier. eXist: An Open Source Native XML Database. In: Akmal B. Chaudri, Mario
Jeckle, Erhard Rahm, Rainer Unland (Eds.): Web, Web-Services, and Database Systems.
NODe 2002 Web- and Database-Related Workshops, Erfurt, Germany, October 2002.
Springer LNCS Series, 2593.

A. Morrison, G. Ross, and M. Chalmers, Achieving Sub-quadratic Multidimensional
Scaling through the Combination of Sampling, Clustering and Layout Algorithms, in Proc.
IEEE InfoVis 2002, Boston, Massachussets, USA, October 28-29, 2002. IEEE Computer
Society Press. http://www.dcs.gla.ac.uk/~matthew/papers/SubQuadMDS.pdf

A. Nierman and H. V. Jagadish. Evaluating Structural Similarity in XML Documents, In Int’l
Workshop on the Web and Databases (WebDB), Madison,WI, Jun. 2002.

Northern Light. http://ww.northernlight.com.

C. Plaisant, J. Grosjean, and B. Bederson. SpaceTree: Supporting Exploration in Large
Node Link Tree, Design Evolution and Empirical Evaluation, In Proceeding of InfoVis
2002.

S. E. Robertson, S. Walker, M. M. HancockBeaulieu, M. Gatford, and A. Payne. Okapi at
TREC-4, In D. K. Harman, editor, The Fourth Text REtrieval Conference (TREC-4), pages
73--96, Gaithersburg, MD, 1996. National Institute of Standards and Technology, Special
Publication 500-236.

D. Roussinov and H. Chen. Information Navigation on the Web by Clustering and
Summarizing Query Results, In Information Processing and Management 37 (6) (2001)
786-816.

G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513{523, 1988.

Shneiderman B. The eyes have it: A task by data type taxonomy for information
visualizations, In Proceedings IEEE Visual Languages, pages 336-343, Boulder, CO, Sept
1996. http://citeseer.nj.nec.com/shneiderman96eyes.html

B. Shneiderman. Tree visualization with tree-maps: A 2-d space-filling approach. ACM
Transactions on Graphics 11, 1 (1992), 92-99.
http://citeseer.nj.nec.com/shneiderman91tree.html

Srivastava, S. Al-Khalifa, H.V. Jagadish, N. Koudas, J. M. Patel, and Y. Wu. Structural
Joins: A Primitive for Efficient XML Query Pattern Matching, In Proceedings of the ICDE
Conference, 2002.
Theobald and G. Weikum. Adding Relevance to XML, Int’l Workshop on the Web and
Databases (WebDB), Dallas, TX, May 2000

J. Wise, J. Thomas, K. Pennock, D. Lantrip, M. Pottier, and A. Schur. Visualizing the non
visual: Spatial analysis and interaction with information from text documents, In
Proceedings of IEEE Information Visualization, pages 51-58, 1995

	HEX: Visualizing HEterogeneous XML Document Information Retrieval
	Iterative Search and Similarity
	3.0 The HEX System
	3.1 The HEX Data Model
	Element Index
	Keyword Index

	Element Freq Vector
	3.2 Visual Interface
	Inter-Document Results
	
	Dynamic Queries
	Drill Down
	Intra-Document Results

	Ranking

	3.3 Search Operations
	
	
	Retrieval Mode
	Other Search Operations

	4.0 Evaluation
	5.0 Conclusions
	6.0 Future Work
	
	Appendix A
	Implementation References

