
Visualizing Network Agents

Ken Deeter

April 29, 2003

1 Introduction

Information visualization systems attempt to trans-
form abstract data into a visual representation to aid
in its comprehension and management. In the case
of networks, one can frequently be faced with ab-
stract network topologies, and behaviour in the net-
work that does no intuitively map to any visual rep-
resentations. Network developers often rely upon the
convention of a node-link graph to depict topologies,
and there has been much work attempting to take ad-
vantage of this convention to automatically visualize
these complex topologies.

My goal in this project was to apply various infor-
mation visualization techniques to the area of mobile
network agent based computing.

When developing a system based on the mobile
agent model, it is often the case that the behaviour of
the system is difficult to comprehend because of its
highly parallel nature.

1.1 Target Task

The system presented in this paper, temporarily
named WaveViz, is intended to be used by developer
of algorithms based on the agent paradigm. The in-
tent is to allow developer to visually verify the be-
haviour of their system, over a reasonably large net-
work topology.

Several specific requirements were identified:

• Because an agent based system or algorithm is
inherently highly parallel, parallel events in the
network must be able to be seen as happening
in parallel. Although this may seem trivial, it
imposes very specific requirements on the im-
plementation.

• When operating on a large network topology, a
user needs to be able to focus in on a specific
area of a network. For example, if it is known a
priori, that an algorithm fails at specific nodes,
it should be possible to easily “zoom in” on to
those nodes.

• Some network topology browsing should be
available. When dealing with a system that runs
on a network, it is often necessary to understand
the underlying topology. The system should
support some method of understanding compli-
cated topology.

1.2 Data

The input data to WaveViz is a log file of network
events. The syntax of this log file was designed
to be as flexible as possible by supporting arbitrary
network topologies, as well as dynamic topology
changes (non-static topology). The intent was to
allow WaveViz to be used by any relevant agent
based system. Each system only need to be modi-
fied slightly to log data in a specific format. None

1



of the data required is anything a agent based sys-
tem would not already know about itself, confining
the modifications of a system to simply the capture
of specific events, and not the discovery of state.

1.3 Assumptions

In the design of the system, several assumptions are
made regarding the type of data input and its scale.

• This system avoids the traditional graph layout
problem by assuming that the input data pro-
vides 2D locations for each node. Although this
limits the system’s usefulness to some extent,
the ideas that it demonstrates can be applied to
systems that have automatic graph layout facil-
ities as well.

In practice, location data is often available and
very relevant in visualizing topologies. Typi-
cally, hosts on a network have some physical
location in space (one which may even change
as time goes by). Automatic graph layout can
be useful in understanding the abstract struc-
ture of a network. In the scope of this project
however, it was a reasonable to assume that we
only care to see a more physically-based repre-
sentation of a topology.

• WaveViz is also not designed to deal with very
dense networks (i.e. high edge/node ratio). Net-
works in the real world tend to be sparse, with
links often connecting only the nearest of neigh-
bours.

2 Related Work

In spirit, this project is in many ways similar to
the super-scalar processor visualization described in
Stolte et al. [5]. Both attempt to use visualizations

to help users understand inherently parallel time-
varying data.

WaveViz also borrows many ideas traditional
zooming interfaces such as those described in Fur-
nas et al. [2] and Bederson et al. [1]. Although no
animated zooms were implemented in WaveViz, the
simple idea of interactively focusing in on a subset
of data is an integral part of this system.

The screen distortion features in WaveViz are in-
spired by works such as Munzner[4], Lampling et al,
and the variety of methods described in Leung et al
[3].

3 Approach

3.1 Interaction Model

In designing the system, a specific model of interac-
tion with the user was kept in mind. A development
cycle similar to the following was envisioned:

1. Edit/compile agent program/algorithm

2. Generate log

3. Feed log into WaveViz

4. replay in WaveViz to confirm correct behaviour

5. repeat

In this model, a user (developer) knows what
he/she needs to see when using the visualization sys-
tem. Thus, there is no need for the system to support
a exploratory interaction model. It is assumed that
the user will have some expectation of what the dis-
played behaviour of the system will be.

3.2 Zooming

The emphasis, then, is on allowing the user to con-
centrate on specific aspects of the behaviour. To al-
low this controlled concentration, a modified style of

2



zooming is introduced. The zooming controls in the
visualization are not arbitrary. The user cannot zoom
in or out as far as he/she wants. Any notion of zoom
is defined with respect to elements in the network.

In WaveViz, this idea is most well illustrated by a
method of a zooming that “fits” elements of interest
onto the available window space. The system, by de-
fault, attempts to fit all nodes of the network onto the
screen. The user, however, can easily select any sub-
set of nodes, and the zoom automatically readjusts to
fill the screen with these subsets of nodes.

There are two points of interest with this type of
zooming. First, the system can guarantee that most
of the screen space available will be used. As pixels
are limited resource, this type of zooming was de-
signed to always take advantage of the pixels avail-
able. Secondly, because the zoom is always defined
in terms of elements of interest, a user cannot get
“lost.”

3.3 Screen Distortion

Even with this zooming model, it is often the case
where even a reduced set of on-screen elements can
be displayed too closely together. In WaveViz, if the
position of two nodes are specified very closely to
each other in the input, then no amount of zooming
alone will automatically un-clutter these two nodes
(unless we zoom in on a subset containing only those
two nodes). Because of this, a few different methods
of screen distortion are added to allow the user to
“unclutter” the displayed topology.

These distortion mechanisms are designed to con-
trollably distort the positions of on-screen elements,
so that a user can visually expand a specific area
within a particular zoom. Care is taken to ensure that
a the subset of nodes that are selected for the cur-
rent zoom are always on screen, even with distortion
applied. These distortions provide a focus+context
type interface which allows groups of nearby nodes

to be allocated more screen space if the so wishes.

3.4 Faded display

The zooming is implemented by computing a bound-
ing box on the selected nodes of interest (see section
4 for more detail). The region in model space de-
scribed by this bounding box is then scaled to the
available rectangular screen area. When drawing the
region of interest, however, it is possible that nodes
that were not selected to be zoomed in on, may still
fall inside this bounding box. As these nodes (and
links attached to them) may still constitute important
contextual information, they are drawn in a faded
colour, so that they are still visible, while not draw-
ing attention from the main elements of interest.

3.5 Frame rate

During any times where user input causes a change
of visual state, the system attempts to display a rea-
sonably smooth animation. Certain screen elements
may be not drawn during animation phases, main-
taining frame rate, frame-to-frame coherence, and
ultimately, user comprehension.

3.6 Subset Selection

When selecting a subset of nodes to zoomed in upon,
it can be difficult to see node connectivity, as all
nodes in the network are displayed simultaneously.
Because of this, a very simple method of showing
network topology is implemented while a selection is
taking place. Specifically, while each selected node
is highlighted with the selection colour, every non-
selected node adjacent to a selected node is high-
lighted with a secondary highlight colour. A user
can immediately tell which nodes are adjacent to the
nodes that are currently selected. This technique aids

3



the user in selecting a connected subset of nodes,
which is often analogous to selecting a subnetwork.

4 Implementation

4.1 Log file format

The log file which serves as input to WaveViz has a
very simple format with one line per entry. A net-
work is define by a collection of three fundamen-
tally entities: nodes, links, and agents. In its current
version, approximately one dozen simple operations
on these entities are supported, including the cre-
ation/deletion of nodes/links/agents, the movement
of agents, and state changes for nodes/links/agents.

“States” for various entities are define by special
headers in the log file. A identification string is
mapped to visual parameters for the various enti-
ties. For example, one might define the “supernode”
state as being represented by a node with red colour
and large radius. The number of such states is not
bounded, and thus can be used to represent an arbi-
trary number of application specific states.

Each line contains one event in the network. Each
event is prefixed by two timestamps – a start time
and an end time. Events that happen instantaneously,
such as the creation/deletion of nodes, are assumed
to have the same value for both the start time and the
end time. Events that happen over a period of time,
are assumed to have different start and end times. By
having both start and end times in each entry, we can
easily record events happening in parallel.

Log entries in the log file do not necessarily need
to happen in order. All entries are sorted by their start
time prior to replay. This flexibility allows for more
convenient log collection mechanisms in the actual
systems that are to be visualized, as collecting logs
of multiple parallel distributed events can be a chal-
lenge.

4.2 Visualization Engine

The engine was written in Java2D (and the appli-
cation in Java). Java2D was chosen as it provided
a convenient library for drawing shapes. In retro-
spect, however, implementation with a more efficient
library such as OpenGL would have allowed more
complex behaviour.

The engine is organized into a pipeline. The
pipeline has the following stages:

1. Zoom: this stage performs a transformation of
node positions from a virtual model space (as
specified in the log input) to screen space, de-
pending on the current zoom bounding box.
This bounding box either is set to contain all
the nodes in the graph (and dynamically adjusts
when new nodes are created or destroyed) or a
selected subset of nodes.

This phase can also determine the visibility or
“fade” of nodes. This is mainly done by test-
ing whether each element falls inside the cur-
rent bounding box.

2. Distortion: The distortion phase performs a
mapping from screen space coordinates to
screen space coordinates, depending on the cur-
rent distortion parameters.

3. Render: The final phase renders the network el-
ements onto the screen with the parameters de-
termined by the previous phases. The colours
that are used in for various elements are cal-
culated in this phase from higher-level parame-
ters (such as “fade”) determined in the previous
phases.

Both the Zoom phase and the Distortion phase are
performed by modularized classes separate from the
main application, allowing for easy replacement and
expirementation. In developing the system, several

4



ideas were tested, but a simple design was chosen
due to Java2D’s performance limitations.

5 Results

Figures on the following pages illustrate the various
aspects of the system previously described. The per-
formance limit for the system appears to be around
500 nodes, although no formal performance testing
has been done.

5



Figure 1: A screenshot of the system showing a simple network of 15 nodes with 4 nodes having differenti-
ated states.

Figure 2: A screenshot of the system showing a network of 50 nodes, with the user in the process of
selecting several nodes. Selected nodes are shown with the cyan hilight, and nodes adjacent to selected
nodes are shown with a red hilight.

6



Figure 3: A shot of a subset of nodes (from the 25 nodes in the previous figure), shown with a zoom. Faded
nodes show location of nodes that fall within the zoom’s bounding box, yet have not been explicitly selected.

Figure 4: A shot of a multicast backbone creation algorithm in process. Agents are shown with green boxes.
Red links depict links chosen to be part of the multicast tree.

7



Figure 5: A shot of a 200 node graph.

Figure 6: A shot of the same 200 node graph during a selection process.

8



6 Discussion

6.1 Strengths

The system in its current state already provides a use-
ful tool for developers. In demonstrating this tool
to several networking grad students, they have ex-
pressed significant interest in pursuing further use.
The ability to see parallel events in the network is
useful, but the ability to manage a larger number of
nodes in an arbitrary configuration is the differenti-
ating factor of this design.

6.2 Weaknesses

The major weakness in the system is, in my personal
opinion, its incompleteness. In concept, I believe the
ideas in this system have much potential. However,
due to various reasons (lack of Java2D performance,
lack of time), the implementation could not fully re-
alize all the ideas in a complete manner.

Many issues exist with the current system which
need to be addressed. Some as simple as additional
UI requirements, some more complex as modifying
the rendering code.

There are many bugs and problems related to lay-
ering and drawing order. Some nodes appear above
other nodes in an inconsistent manner. Faded nodes
may be drawn over unfaded ones. Hilighted links
may be obscured by ordinary ones. All these prob-
lems are due to the simpleness (or ignorance) of the
rendering routine. In many cases the rendering en-
gine was left unfixed to avoid incurring any further
rendering costs.

In addition to more intelligence during the render-
ing process, greater user control in the rendering out-
put would be desirable. For example, the ability to
emphasize certain links (such as the multicast tree
links in the multicast example) would make the vi-
sual display much more comprehensible, when many

overlapping links are being displayed.
The distortion methods employed could also be

improved. Although they allow for somewhat use-
ful distortion, they leave much to be desired. The
methods used by WaveViz are consistently inade-
quate when a user is interested in multiple areas of
a zoomed subset. A multi-focus lens-like approach
may be able to solve this problem.

Zooming could be improved by including param-
eters such as the amount of available screen space,
into the layout algorithm. The current bounding box-
based method does not produce good results in many
cases, such as when relatively few nodes are selected
for a zoom. In this case, distance between close
nodes can be greatly increased, reducing the recog-
nizability of links between them.

References

[1] Ben Bederson and James D Hollan. Pad++: A
zooming graphical interface for exploring alter-
nate interface physics. In Proceedings UIST,
1994.

[2] George Furnas and Ben Bederson. Space-scale
diagrams: Understanding multiscale interfaces.
In Proceedings SIGCHI, 1995.

[3] Y.K. Leung and M.D. Apperly. A review
and taxonomy of distortion-oriented presenta-
tion techniques, June 1994.

[4] Tamara Munzner. H3: Laying out large directed
graphs in 3d hyperbolic space. In Proceedings
Information Visualization, 1997.

[5] Chris Stolte, Robert Bosch, Pat Hanrahan, and
Mendel Rosenblum. Visualizing application be-
havior on superscalar processors. In Proceedings
Information Visualization, 1999.

9


