
Visualization of Embedded Binary Trees in the Hypercube

James Slack
University of British Columbia

Department of Computer Science

jslack@cs.ubc.ca

April 30, 2003

Abstract

In the realm of parallel multiprocessor systems, it is convenient to represent the structure of
a system as a regular, replicated structure such as a standard hypercube to aid in commu-
nication routing. A typical parallel program, however, makes use of simple communication
structures often represented as a tree. I investigate the difficulty of visualizing the embeddings
of arbitrary balanced binary trees to aid in the embedding process. The visualization system
presented is assessed for usefulness in developing new algorithms to take advantage of the
representation. Various other visualization techniques are also introduced to take advantage
of this system.

1 Introduction

A hypercube multiprocessor system uses a regular and replicated structure to its advantage; rings,
meshes, and efficient routing makes such a system layout attractive to system designers. In such
a system, the nodes of the hypercube correspond to the processors while the edges of the hyper-
cube correspond to the communication links between adjacent hypercubes. Also, some hypercube
systems are not complete in that not all edges which appear in a fully connected hypercube exist.
Furthermore, for many reasons, the links between hypercube nodes are not identical in length,
communication latency, or other communication performance metrics. In this paper, I will assume
that the hypercube graph is fully connected in that if the binary representation of hypercube nodes
is considered, each adjacent node pair will have a Hamming distance of 1. I will also assume
communication links are homogeneous.

To make use of multiprocessor systems, it is often natural to represent the communication between
processors as a tree; such communication structures occur frequently as client-server or processor
farm models. The usefulness of binary trees in communication is not clear, but since the branching
factor of binary trees is small, the amount of communication work forced onto a single node is
negligible. Communication bottlenecks in a binary tree are not an issue since the maximum degree

1



of any node is 3. The tradeoff in branching factor is simple: with a large branching factor, many
trees become congested but the diameter is potentially small while a small branching factor has
converse properties and the distribution of work is often improved at a cost of moving data long
distances. Again, the nodes of a tree will represent processors in a multiprocessor system, much
like the hypercube model of a multiprocessor system. These facts lead into a general problem:
can the nodes and edge links in a tree be given a static assignment to nodes and edge links in a
hypercube?

It is not trivial to embed trees in a hypercube [10], however, the complexity of embedding arbitrary
binary trees is not known. Many attempts to embed special types of binary trees are known;
heuristics exist for classes of trees known as caterpillars [2], quasi-stars [5], and straight-line trees
by Hamiltonian cycles. Some attempts to embed arbitrary trees where average edge dilation, the
average number of hypercube edges that are used in a particular hypercube embedding for all
edges that are used, is minimized are also common [8]. Due to the nature of hypercubes, it is
a straightforward observation by the parity of the binary representation of adjacent nodes of a
hypercube that any perfect, all nodes embedded with no extra edge dilation, embedding requires
the embedded graph to be colour balanced. In a colour balanced graph, in this case a tree, the
graph is bipartite.

Havel’s conjecture [3] introduces the idea that if a binary tree is colour balanced then it is embed-
dable in a hypercube of optimal size with no extra edge dilation. This hypothesis has not been
proven nor has there been a counterexample found to disprove the claim. Exhaustive proofs for up
to H5 have been completed, but exhaustive proofs for H6 and larger have not due to the explosive
complexity of the problem and the long running time of embedding algorithms for a problem of
that size.

The embedding problem of a colour balanced tree with 64 nodes into an optimal hypercube (H6)
was attempted by Helmer and Eisenberg [4] in the context of parallel systems research. The prob-
lem space was divided into domains for distributing the computational load characteristic of the
simple backtracking algorithm that was used. An in depth formal definition of the problem can be
found here [1] where Aderhold and Slack embedded colour balanced trees in optimal hypercubes
with stochastic search methods. Their algorithms resulted in embeddings of all 32 node strongly
balanced1 trees as well as embeddings of 64 node trees that Helmer and Eisenberg could not em-
bed. The embedding results for 64 node colour balanced trees from Aderhold and Slack will be
visualized in this paper.

Although the embedding of a tree in a hypercube is easily verified by checking the injective invari-
ant of embedding, it is not so easy to visually interpret the embedding. To visualize embeddings
in hypercubes H3 and smaller, it is fast and simple to sketch the result. For H4, it is still possible
to sketch the embedding as a simple stretch of H3; the ”4th dimension” edges connect two H3

structures. H6 embeddings are much more difficult than H5 since the two dimensional stretch of
H5 from H3 stays in a plane while three dimensional stretch of H6 occludes the ”rear” H5. See
Figure 1 for an example of H6, noting that it is indeed difficult to visualize without a graphics
package capable of freely rotating the hypercube in 3 dimensions.

1Strongly balanced trees are binary trees that can be formed by a simple process of adding pairs of connected nodes
to a strongly balanced tree; these trees have special folding [9] properties and are proven to be perfectly embeddable in
optimal hypercubes.

2



Figure 1: A full hypercube (H6)

The paper is organized as follows: First in Section 2 I describe the programs used to visualize
embeddings. In Section 3 the visualization of embedding binary trees in hypercube H6 is intro-
duced. Then, in Section 4 several reductions are introduced to remove edges that are common to
two binary tree embeddings; the embeddings are usually taken from the same binary tree instance,
but this is not absolutely necessary. Finally, Section 5 goes over some of the results of this project
and Section 6 concludes.

2 The Program

For this project I have chosen to use a combination of Geomview [6], a software package for
visualization, and Java. For the visualization component, Geomview provides some fundamen-
tal 3 dimensional transformations such as rotations and translations and was very convenient for
visualizing hypercubes as complicated as H6 with all edges shown simultaneously. For the user
interface component, Java provided an easy to use GUI layout engine and many other nice tools
that are found in libraries such as hash tables, parsing, multiple threads, and basic file I/O. Further
high-level implementation details will be addressed in Section 5.

3 Visualization of Embeddings

This section describes methods of visualizing an embedding of a single tree in a hypercube. The
methods use an already embedded tree as input and either visualize the embedding as a tree (Sec-
tion 3.1) or as a hypercube structure (Section 3.2).

3



Figure 2: A hypercube with an embedded tree (left) and the tree embedded in the hypercube (right)

3.1 Colouring Trees

Upon embedding a 64 node tree, the most natural way of looking at a tree without putting it into
a 3 dimensional structure was colouring the edges of the tree. This way, the structure of the tree
is maintained as a 2 dimensional layout while still giving information about the dimensions used
in the hypercube. Two trees shown with this method provided an easy comparison for simple
isomorphic embeddings of the same tree instance but if two edges from the same tree in the same
position were coloured the same, it did not mean that those edges occupied the same edge in
the hypercube. No information as to where individual edges lie in the hypercube is given, so of
course other techniques are required. See the right side of Figure 2 for a tree drawn with colours
representing dimensions.

Of course since a hypercube is symmetric in any direction, the colours are completely interchange-
able. See Section 5.1 for an explanation of why this is important to the results of this visualization.

3.2 Trees in Hypercubes

This method provides much more detail as to where an edge is embedded relative to other edges.
Since all embeddings input by the program are perfectly embedded in the hypercube, no edges
need to be drawn differently to represent dilation. However, the number of edges required to draw
an embedding (63) is approximately 1

3
of the number of edges in H6 (192) and the hypercube looks

very cluttered. See the left side of Figure 2 for an example of a tree embedded in H6. The section
following (Section 4) describes methods to reduce the clutter by using comparison techniques
for any two embeddings, either by drawing the edge similarities between two embeddings or by
drawing the edge differences between two embeddings.

4



4 Reducing Embeddings

Since embeddings can become very cluttered, I have chosen to remove edges when possible in-
stead of further additions of edges. If I had chosen to show different edges by adding slightly
different coloured edges to an embedding of a tree in the hypercube from a second embedding, the
hypercube would surely be too cumbersome to be useful for analysis. Now I will present several
techniques I explored empirically during my evaluation of these reduction techniques mentioned.
The program allows for both showing only similarities or showing only differences between em-
beddings. If similarities are to be shown, then edges will only appear in the hypercube if both
embeddings include that exact edge. Similar for differences, edges will only appear in the hy-
percube when an edge only appears in the first tree embedding, but not the second embedding.
Results from these reductions will be given in their respective sections as well.

4.1 Uninformed Reduction

The first, naive approach I attempted was a very simple matching technique: if two embeddings
had edges that overlapped without rotation of any edges, then the edges matched. When edges
matched, then the edge either was drawn in the similarity hypercube, or was removed from the
first tree embedding in the differences hypercube. This approach, although very simple and not as
successful as other techniques, was definitely the most efficient since each tree needed only to be
parsed in order and therefore zero dimension swaps2 were required.

This technique was the worst at finding similar edges, as was expected. Since this is a baseline for
further reduction techniques that attempt to change the number of matching dimensions, this is far
from a negative result.

4.2 Reduction by Dimension Count

A second approach attempted was a slightly more complicated attempt to match edges. For this
evaluation, I reordered the dimensions with dimension swaps until the most frequently occurring
dimensions were assigned the lowest dimension-numbers possible. The dimension-number is an
arbitrary number that corresponds to a colour/dimension of the hypercube, while the frequency of
a dimension is a count of the number of times a dimension is used in an embedding.

Often several dimensions may be used an equal number of times and therefore have identical
frequencies; this may have resulted in poor performance for this reduction attempt. Since this
reduction attempts to increase the number of similar edges, I would have to say that this reduc-
tion, although interesting, is about as effective as an uninformed reduction. Visually, it does not
appear that more edges are similar when dimensions are ordered in this respect3 . This method
seemed promising at first, but since the number of edges wasn’t reduced substantially from the

2Dimension swaps are a simple exchange between 2 dimensions. When 2 dimensions swap, all edges that lie in one
dimension will move to the second dimension and vice versa. This operation requires a traversal through each node of
the tree.

3I have not evaluated numerical results for this method nor have I evaluated any of the other results numerically.

5



uninformed result, this method is not recommended for evaluating embeddings to come up with
better embedding algorithms.

A small positive: this algorithm performed well with respect to run time performance since it
only required at most 5 dimension swaps per tree. Nevertheless, since the result of this method
produces nothing of use, this positive is not good enough to give this method any advantage over
much slower methods.

4.3 Greedy Minimization Reduction

This was an attempt to minimize the number of edges that are similar in two embeddings. I used
the slow, but complete, search technique that checked the embedding of a stationary, non-swapping
tree with a tree that permuted the dimension assignments through every possible assignment. This
means that this method performed at most 5 dimension swaps 6! times. When the method found
a lower number of matching edge assignments than the lowest so far, it saved the assignment.
Although this reduction was very slow compared to the previously mentioned reductions, it is
still reasonably fast enough so the wait for the check to complete on a computer with decent
performance4 is not too long.

The results for this method are not very useful for the intended problem of finding better algorithms
for embedding trees. However, a new problem comes to mind when observing how few edges are
in the similarities hypercube: embed two trees in a hypercube such that the tree has minimal
average dilation. This might be a useful solution in the context of running multiple simultaneous
communication trees on a hypercube multiprocessor to reduce the load on the edges in both trees,
or perhaps the second tree could act as a reserve communications network in case the primary
system fails. This may be a problem worth considering as a future project.

4.4 Greedy Maximization Reduction

Similar to the Minimization Reduction, this reduction tries to find the most similarity between two
embeddings of a tree. This is undoubtedly the best reduction possible with any two embeddings
and has the same performance characteristics as the Minimization Reduction.

Again, the results for this method, although the best possible for finding the most similar dimen-
sion assignments, are still disappointingly not useful for analysis. Since the reduction does not
have success assigning many edges to the same dimension, it appears that the reduction approach
taken for this project is not successful. The success of the reductions depends on the similarities
of the embeddings and finding two very similar tree embeddings in a large domain5 is practically
hopeless. Locating two similar trees would be by extreme luck alone: it may be practical to find
embeddings by permuting existing embeddings. Because the best stochastic method found [1]
uses population based methods in a similar manner, it might be more practical to use existing em-

4Such as on a 1 GHz Pentium III.
5The domain of embeddings in H6 may have size on the order of magnitude of 64!, but this rough size overestimation

does not take advantage of the Hamming distance properties of an embedding so it may be much smaller.

6



beddings as a strong influence on a new population based method than to rely on visualization for
this problem. However, one must not discount a visualization system for the problem of finding
similar tree embeddings quite yet; finding the most similar pair of trees could perhaps be done
much faster on a different visualization system for a human perceptual system than a

(

n

2

)

number
crunching algorithm.

5 Results

This section provides further results somehow unrelated to the stated problem to find more tech-
niques for finding perfect mappings of tree nodes to hypercube nodes. Results pertaining to re-
duction methods are described in their appropriate subsection in Section 4.

5.1 Dimension Swapping

Dimension swapping is not only useful in visualizing isomorphic representations of the same
embedding, but it can be used to reduce the number of edges shown in an embedding comparison.
In Section 4, several different techniques used dimension swapping in an attempt to find better
isomorphic embeddings to either match two trees or make two trees as different as possible. The
inflexibility of the system does not allow a user to choose which dimensions he wishes to swap; this
process involves a large number (6! in H6) of permutations and therefore would make the system
more complex than it should be. It happens that dimension swapping does not help solve problems
of finding where the same edge is embedded; it can help perturb an embedding to determine
dimensional permutations that result in a minimal number of shared edges for two embeddings in
the same hypercube.

Since this project aims to satisfy routing in real systems, dimension swapping may have a prac-
tical application as well. Since most multiprocessor systems have tighter coupling between local
nodes, such as an 8 processor system, than between remote nodes, such as between many 8 pro-
cessor systems, a user may wish to favour the use of certain node links. This may have a weak
correspondence to the reduction using dimension frequency in Section 4.2.

5.2 Edge Selection

The edge selection feature is perhaps the strongest simple feature of this visualization system. With
a tree embedded in a hypercube, edges selected on the tree will also be selected on the hypercube
and vice versa; edges selected in the hypercube when similarities are being shown will appear in
both trees6. Edges will stay selected until the user pushes the Change button7 or toggles the edge
back to its unselected state. Since the program receives information from Geomview in a straight

6However, edges selected in trees when similarities are shown will not select edges in the other tree and will toggle
the selection of the edge in the hypercube.

7This is kind of a bug, but not really a totally bad thing.

7



Figure 3: A path selected in a hypercube with an embedded tree (left) and the tree embedded in
the hypercube (right)

text file8 a restart of the GUI without deleting the input files and restarting Geomviewwill result
in a replay of the selections since those files were created. This can be interesting sometimes and
can always be undone by pressing the Change button, but it is annoying if the file gets too big.

Selecting edges allows for several useful features. Edge selection showing where similarities occur
in a similarity comparison between two trees shows some interesting results. For some trees that
look quite similar, it is hard to see how far apart similar edges in two embeddings actually are
without using edge selection. Edge selection also allows for path traversal, explained in the next
subsection.

5.3 Following Paths

Following from edge selection, a user may wish to follow a path in a tree and see the corresponding
path appear in the embedded hypercube. See Figure 3 for an example. This is possible since each
edge of the tree maintains its own state, which includes whether it is currently selected. Selecting
edges to form paths is handy especially for non-comparative embedding tasks. As was stated
previously, in Section 5.1, applications to efficient use of real networks of processors require less
communication between more separated processors. By minimizing the communication between
processors that have the poorest communication metrics, even the most efficient implementation
of a complex system may still require a visual understanding of the system bottlenecks.

8I had troubles using pipes for this communication, but sending to Geomview uses pipes.

8



5.4 Linking Views

The views of two trees and a hypercube are effectively linked together. Edge selection allows what
happens in one view to be mirrored to the appropriate edge in a second, or a third, view. Since
each action is its own inverse, there is no need for an undo feature since it is built into the system.
Also, when a user selects a different reduction technique, the request is sent to all views at the
same time. Due to the limited nature of the interaction possible with this system, it may be useful
to allow users to manually swap edge dimensions. Although this may complicate the system, it
would provide flexibility to more interactively modify the similarities/differences hypercubes that
appear from edge reductions.

5.5 Colour Keyed Dimensions

With a small enough number of dimensions, I was able to encode dimensions as unique colours:
red, blue, green, cyan, magenta, and yellow were used for unselected edges in respective dimen-
sions while white was used as a colour to represent selected edges in any dimension. I found it
difficult to find selected white edges if I didn’t know where to look, but I also found it convenient
to rapidly select an edge to make it appear to flash. This of course makes the selected/unselected
edge pop out and drags my attention to the region of interest. It was also much easier to find white
paths that were longer than one edge in the hypercube since a continuous white line, not neces-
sarily straight, also appears with a low amount of perceptual effort since it clearly contrasts with
the other edges which were shorter and only occupying single dimensions. The problem of course
becomes more difficult to find a selected edge when many edges are selected or when many edges
are in the reduction/embedding.

5.6 Tree Layout

My previous attempts at tree layouts were not quite successful. Tree layout in a ”nice” way was a
difficult problem; bushy trees often had edges that meet where they are not supposed to or edges
that cross. My tree layout concerns were put to rest after making use of the horizontal layout
courtesy of Reingold and Tilford [7]. I will not go into detail on how this algorithm works, but
will say that this algorithm provides a much improved look to the binary trees and allows edge
selection in trees where my previous attempts would have proven difficult.

6 Conclusions

This paper presented a project that was capable of visualizing a hypercube of up to H6. The project
performed well in displaying the embedding of binary trees in the hypercube as well as several
other tasks such as edge picking and displaying trees with a nice layout. Although the purpose
of the project was intended to evaluate embeddings of similar trees to search visually for better
embedding techniques, there was no evidence that modifying the dimensions with simple swap
moves would help. The visualization reduction methods used only work on non-isomorphic but

9



very similarly structured embeddings of the same tree, although no such embeddings have been
found. A different visualization system may be helpful in this respect.

The major success of this project has to be how selected binary tree paths can be visualized within
a hypercube structure. A result such as this provides some insight to interesting paths in single
embedded trees. Another interesting result was the potential interesting problem that involved
embedding two binary trees in the same hypercube.

References

[1] M. Aderhold and J. Slack. Embedding balanced binary trees in the hypercube. University of
British Columbia, April 2003.

[2] I. Havel and P. Liebl. One-legged caterpillars span hypercubes. Journal of Graph Theory,
10:69–77, 1969.

[3] I. Havel and J. Morávek. B-valuations of graphs. Czechoslvak Math. J., 22:338–351, 1972.

[4] S. Helmer and A. Eisenberg. Exploring issues of embedding color balanced binary trees into
64 node hypercubes. University of British Columbia, December 2002.

[5] L. Nebesky. On quasistars in n-cubes. Casopis pro Pestovani Matematiky, 109:153–156,
1984.

[6] M. Phillips. Geomview/oogl release 1.8.0. Geometry Technologies, Inc., November 2000.

[7] E. M. Reingold and J. S. Tilford. Tidier drawings of trees. IEEE Transactions on Software
Engineering, 7:223–228, 1981.

[8] G. Smedley. Algorithms for embedding binary trees into hypercubes. Master’s thesis, Uni-
versity of British Columbia, 1989.

[9] A. S. Wagner. Embedding all binary trees in the hypercube. Journal of Parallel and Dis-
tributed Computing, 18:33–43, 1993.

[10] A. S. Wagner and D. Corneil. Embedding trees in the hypercube is NP-complete. SIAM
Journal on Computing, 19(4):570–590, June 1990.

10


