
Mythcomm: A Program for Removing

Commercials Quickly

Chris Gray

April 29, 2003

1 Introduction: Getting Rid of Commercials

While the advertisements shown by television stations pay for the content that
the stations provide, most of us would rather not watch them. This paper
describes a system called mythcomm that attempts to make removing them
easy through a visualization. We want to do this quickly, since it would be as
worthwhile to simply watch the commercials if it took too long.

Mythcomm takes advantage of the visual system’s ability to spot anomalous
objects quickly from among a large group. To aid the visual system in doing
this, it tries to place similar looking objects near each other using clusters.

1.1 Definition of Terms

A frame is a picture of the video frozen at a second in time. It can also refer
to the amount of time that it takes to display a frame – usually around 1

30 of a
second.

A scene is a collection of frames that would be shown in order.
A program is the complete video from beginning to end.
A commercial is usually an advertisement in a program, though the idea

could be extended to any type of scene that the user wants to remove from the
program. Content is the opposite of a commercial.

When discussing the implementation of the editor, we will use the terms
frame and scene almost interchangeably. This is because in the editor, a scene
is represented by its first frame. Also, the term object is used to denote either
a scene or a cluster.

1.2 Related Work

The field of video editing is certainly not new, and there are many programs
with which one can remove commercials from content.

The most common form of video editor is what we will call a “linear editor”
(even though they are sometimes referred to as non-linear editors; they act

1



linearly compared to mythcomm). These present video in the order which it
was recorded and give the user a forward key, a backward key, and a mechanism
for marking frames. The user then moves through the video using these keys and
making marks at the beginning and end of cuts. The system that mythcomm
was built upon, mythtv, includes such an editor.

There are also video editors which attempt to remove all the commercials
from a program automatically. mythtv has one of these too. In general, these
try to detect frames that are completely black or high rates of change between
frames. These usually signal the start or end of a commercial. There are also
some also try to find the frequency range of the audio, as commercials generally
have a range that is much smaller than normal programming in order to seem
louder without actually exceeding the allowable volume.

Finally, there is the system described in [1] that uses wavelets to automat-
ically detect areas of high cut rates. While this is not much more interesting
than the existing automatic solutions on its own, the method suggests saving
some representation of the commercial in something like a hash table, so that
it only has to detect each commercial once. This idea distinguishes it from the
other automatic solutions.

1.3 Motivation

Given all this previous work, why are we looking for a new solution? Simply
put, the existing solutions do not work well enough.

Automatic solutions are plagued by false positives and negatives. For ex-
ample, a system looking for high cut rates might mistake a music video for a
commercial or a slowly moving commercial (such as an infomercial-type com-
mercial) for content. One looking for black frames might think the title cards
in Law & Order mark the beginning of a commercial.

With the “linear editors”, the false positive problem essentially goes away.
However, this comes at the cost of speed. You must search linearly through
the entire program at intervals less than the commercial length. Once you see a
frame of content followed by a frame of commercial, you must slow down the rate
at which you move through the file and essentially perform a binary search until
you have found the exact frame where the content stops and the commercial
begins. Also, there is no way to take advantage of the self-similarities within
programs because of the linear presentation of the video to the user.

The solution from [1] has the flaws of the automatic solutions were mentioned
earlier. However, the idea of hashing the video is a good one and will probably
be incorporated into mythcomm at some time.

2 Description of Algorithms

We will be describing all the parts of the system, even those not related to
the visualization as all of them are necessary for it to work meaningfully and

2



effectively. However, we will attempt to limit the discussion of those parts that
are not visualization related and refer the reader to the bibliography.

2.1 Wavelets

Wavelets are a rather hot topic these days, especially in signal processing circles.
Of course, they are not a magic bullet. However, they do provide a convenient
metric for measuring the similarity between two frames of video. They are
used in two places in mythcomm – as the video is read from the video card, a
wavelet transform is done on the frame. If two frames have very different wavelet
representations, this usually implies that they are visually very different. This
is noted in a file as a scene boundary. Later, when the user starts editing the
file, the distance between each pair of scene boundaries is computed in order to
cluster the scenes well. More on that later.

The fact that they are wavelets is not all that important, just that there is
a metric that somehow captures the notion of how visually similar two frames
are. The literature seems to support that wavelets do this well, so they are what
we used.

The wavelet transform that we are using is a Haar transform of a 32 × 32
scaled version of the Y channel of the YUV representation of the frame.

Algorithm 1 Haar wavelet transform

Haar(A, size)

if size == 1 then

return
else

for i = 0 to size do

Ai = (A2i + A2i+1)/2
Ai+size = (A2i − A2i+1)/2

end for

Haar(A, size/2)
end if

2.2 Clusters

We want to find clusters of scenes so that the user can delete many scenes at a
time with a single key stroke. To aid in finding the clusters, we will use random
walks on graphs – a method suggested by [2].

A random walk on a graph G = (V, E) with weights w(i,j) is a stochastic
process where the probability of transitioning from vertex i to vertex j over
edge (i, j) is

pij =
w(i,j)

di

3



where di =
∑

k w(i,k). Now if we put all possible pairs of is and js into a matrix
P of probabilities, we can find the probability of visiting j from i in the kth
step. It is P k

ij (the (i, j)th element of the kth power of P ).
We can use the random walks as a heuristic for finding edges which should

separate clusters. We do this by noting that for vertices i and j in the same
cluster, the probability of getting from i to k or from j to k in ≤ c steps should
be roughly the same, whereas if they are in different clusters, this probability
should be different. Then, if we use these similarities as weights on a new
graph, running the procedure on this new graph should give us an even sharper
distinction between vertices which should not be in the same cluster and those
that should. The procedure can be iterated a few times, but eventually will go
to a steady state.

Algorithm 2 Clustering by Neighborhood Separation

NS(P 1)

P 2 = P 1 × P 1

P 3 = P 2 × P 1

P≤3 = P 1 + P 2 + P 3

for all i, j do

Rij = exp(6 − |P≤3
i − P≤3

j |) + 1
end for

return R

for i = 0 to 4 do

Q = NS(Q)
end for

The näıve implementation of this algorithm takes O(n3), but this can be
improved if the graph is of constant degree.

So how is this useful to mythcomm? We can make a complete graph where
the weights are the similarities between frames as determined by the wavelet
metric described above. Then we can run this algorithm on it. Once we have
iterated it enough times, we can remove the edges that are below a certain
threshold. Then a simple search (BFS or DFS) on the resulting (now discon-
nected) graph gives us the clusters.

2.3 Layout

Laying out the data collected in a reasonable manner is rather difficult given
that the data we are working with only has one meaningful ordinal dimension
– time. However, we do have clusters of scenes now and we would like to lay
out the clusters so that all scenes in the cluster are close together and so that
the clusters overlap each other as little as possible. We would also like to be
able to navigate quickly using just the arrow keys, as mythtv is designed so

4



that it can easily be run on set-top boxes using just a remote-control as input.
Finally, the clusters do not really the fit the standard description of things that
are layed out by information visualization algorithms. They are trees to some
extent (where the depth is always 3), but most tree layout algorithms do not do
well in this context. They are by definition not connected in a graph structure
because of the way the clusters are found.

2.3.1 A Failed Attempt

Our first try at laying out the clusters involved quadtrees (see [4]). It failed on
æsthetic grounds but was rather instructive.

The usual use of quadtrees is to store information about image complexity
in graphics. Given an arbitrary quadtree, the layout of the image is completely
specified. Thus, specifying a quadtree of the clusters and frames that we want
to lay out will automatically lay out the clusters and frames for us in a way that
clusters are prevented from overlapping. Also, finding neighbors to respond to
the user’s requests from the arrow keys is relatively simple using quadtrees.

So what was wrong with it? Suppose the clustering algorithm does a bad job
and produces 4 clusters: one with n− 3 frames and 3 with one frame. Then the
best the quadtree layout can do is to have 1

4 of the window showing n−3 frames
and the other 3

4 of the window showing the remaining 3. Obviously, this is a
waste of space and looks bad. Also, while clusters are not allowed to overlap,
frames will – making it hard to pick out those frames that should be deleted.

2.3.2 Force-based Graph Layout

The general idea of the revised algorithm is to put the clusters back into a graph
and then use a force-based graph layout algorithm to lay them out.

The easiest way to think of a force-based graph layout algorithm is to think
of each element as electrically charged. The elements that are connected by
edges have springs between them. We let these forces (the repulsion of the
electricity and the attraction of the springs) act on the elements for a while and
then stop them. The resulting layout should be æsthetically pleasing.

Since we are laying out clusters, it is possible for elements to be different
sizes. This does not hurt us too much as we can simply think of the surfaces as
electrically charged and the springs connecting the elements as connecting the
centers of the elements.

The exact equations for the magnitude of the force are

fa =
d2

len

for the attractive force and

fr =
len2

max(d, ε)

for the repulsive force. The value d is the shortest between the boundaries of
the clusters and len is the desired length between clusters. Notice that all forces
cancel out when all clusters are len apart.

5



To go from a fairly random set of clusters to a laid out graph, we first
connect arbitrary clusters into a graph similar to Figure 1. Then we make sure
that no two clusters overlap in the obvious manner. Then we run the force-based
algorithm described above.

Figure 1: Graph Layout

Since we do not want the frames to overlap, they are laid out on a simple
grid. They are easier to lay out than the clusters because they are all the same
size.

This layout method is nice for a few reasons. First, finding neighbors is
extremely simple. Each node in the graph simply has to keep track of the four
neighbors that it has and the ordering should not change when the force-based
algorithm is run. Secondly, it is designed to be æsthetically pleasing. Third,
and maybe most importantly, it is space efficient. Larger clusters get more room
than smaller clusters.

2.3.3 Cut Indicator

Because of the very non-linear nature of the way the data is laid out and the
fact that the user can not tell how long each scene is just by looking at the first
frame, we need to give the user some indication of the effects of deleting a scene
(or cluster). This is achieved by having a bar at the bottom of the screen that
encodes which parts of a program have been deleted. Whenever the user deletes
an object, the parts of the program that the user has deleted change from blue
to red in the bar. Thus the user can test the effects of an action before it is
actually performed. This is useful if the scene detector does a bad job and leaves
a very long scene that started during a commercial. In this case, the user can
see that deleting this scene has a big impact and undo his action.

2.4 Interaction

As mentioned previously, mythtv is designed for interaction by remote-control,
so the number of keys used must be kept to a minimum and the mouse must

6



not be used. Thus, mythcomm uses only the arrow keys, D, C, and the space
bar. As expected, the arrow keys change the currently selected object to the
neighbor in the direction of the key. The space bar toggles between selecting
clusters and selecting frames. The D key deletes the current object and the C
key clears the previous deletion (it is essentially an undo operation).

Initially, the user is presented with a screen showing the layed out clusters
where the top left frame of the top left cluster is selected. The selection is
shown by drawing a red border around the frame. Top left was chosen to take
advantage of natural biases based on reading habits. The user can then navigate
inside the cluster using the arrow keys, delete frames, or toggle to the cluster
level. If he switches, a green box is drawn around the cluster and he can then
move between clusters.

When the user deletes an object, it is removed from the screen. If the
user requests for it to be replaced (using the clear operation), it is put back.
Otherwise, he continues navigating as before.

After deleting an object, the graph layout algorithm is rerun on the remain-
ing graph. This makes the graph more compact than it had been before. To
maintain the user’s idea of where objects are, the objects undergo an animated
transition.

3 Results / Evaluation

The current implementation is already very usable. Times taken to edit certain
programs (by the author) are shown in Table 2.

Program mythcomm linear
Simpsons 38 s. 52 s.
Tonight Show 1 m. 7 s. 1 m. 16 s.
The Daily Show 1 m. 50 s. 1 m. 37 s.

Figure 2: Usage times to edit programs

The times in table 2 do not include the preprocessing time for mythcomm
because all preprocessing can be done once before the user requests it and saved
for later. This cuts an average of 30 seconds off mythcomm’s time.

With mythcomm, there are sometimes commercials that get missed and you
are more likely to see the first and last few seconds of every commercial break
than with a linear editor. Thus, mythcomm usually takes slightly less time while
slightly sacrificing quality. As mentioned in the introduction, though, time is
fairly critical in this application.

It should be noted that the time taken in mythcomm seems proportional to
the number of scenes found – a number which is highly dependent on the wavelet
module. On the other hand, the linear editor always takes time proportional
to the length of the video. Thus, properly tweaking the wavelet module can
substantially improve the time taken.

7



3.1 Problems

One problem with the layout approach taken is that the angles between con-
nected clusters are not preserved. Thus, pressing the right arrow key might
move the selection up or down a large amount. In some sense, this is good
because it allows the representation to be more compact, but it could obviously
be confusing to the user. A couple of options we are considering to ameliorate
this are drawing all the edges of the graph or simply drawing the edges from the
currently selected cluster. This second option could also be done if the edges
deviate more than a threshold from their expected angle.

Also, some of the features mentioned in this paper do not actually exist in
the implementation yet – for example, the force based layout scheme is very
challenging to implement well and efficiently and seems rather delicate. Thus,
an approximation of it is currently being used.

4 Examples

In Figure 3, we see the original layout used for the Simpsons episode whose
time was mentioned in the evaluation section. It looks fairly standard; all the
frames and clusters fit fairly easily.

In Figure 4, the layout is shown after editing the program. The cut indicator
has been circled. Looking closely, one might see that there is a frame that does
not look like The Simpsons. In fact, this frame comes just at the end of the
commercial and was undeleted after the cut indicator showed that deleting it
would cause a major change.

5 Conclusion

This tool actually solves a specific problem at a level at least on par with most
of its competitors, though there are still some issues (such as the fact that the
scope of the implementation does not yet match the scope of this paper) to be
worked out.

That said, we do not see a major future for this tool anywhere besides
commercial editing. The automatic scene detection does not give enough control
to a video editor to make cuts precisely where he wants them. It might be useful
as a starting point, but a linear editor will always be necessary in the video
industry. However, in the field of commercial editing, where absolute control is
not really needed (seeing 20 seconds of commercial in an hour long program is
worth it to save 2 minutes editing time), this program does show promise.

8



Figure 3: The Original Layout

9



Figure 4: After Editing

10



References

[1] Wen, X. et al., “Wavelet-Based Video Indexing and
Querying for a Smart VCR”, Princeton University,
http://www.cs.princeton.edu/∼wxd/draft.html

[2] D. Harel and Y. Koren, “On Clustering using Random Walks”, Proceedings
of Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’01), Lecture Notes in Computer Science, Vol. 2245, Springer
Verlag, pp. 18–41, 2001.

[3] D. Harel and Y. Koren, “Drawing Graphs with Non-uniform Vertices”. Pro-
ceedings of Working Conference on Advanced Visual Interfaces (AVI’02),
ACM Press, pp. 157-166, 2002.

[4] Foley et al., Computer Graphics: Priciples and Practice, Addison-Wesley,
1996.

[5] Richards, I., Mythtv, http://www.mythtv.org

11


