

University of British ColumbiaCPSC 414 Computer Graphics

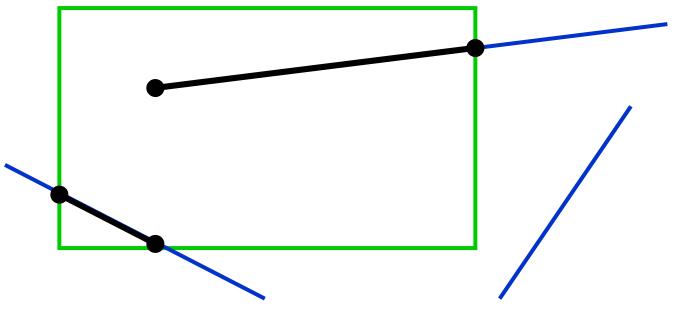
Rotations and Quaternions Week 9, Wed 29 Oct 2003

University of British ColumbiaCPSC 414 Computer Graphics

Clipping recap

Clipping

 analytically calculating the portions of primitives within the viewport



Clipping Lines To Viewport

- combining trivial accepts/rejects
 - trivially accept lines with both endpoints inside all edges of the viewport
 - trivially reject lines with both endpoints outside the same edge of the viewport

otherwise, reduce to trivial cases by splitting into two segments

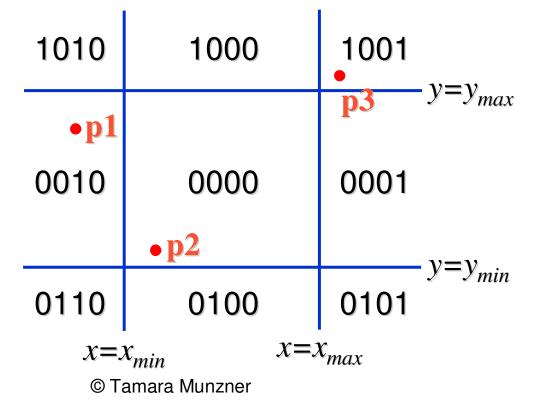
Cohen-Sutherland Line Clipping

outcodes

 4 flags encoding position of a point relative to top, bottom, left, and right boundary

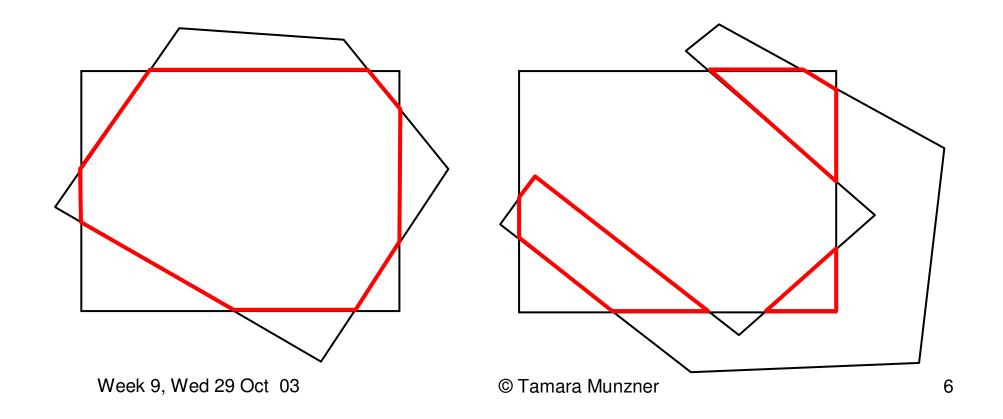
•
$$OC(p1)=0010$$

- OC(p2)=0000
- OC(p3)=1001



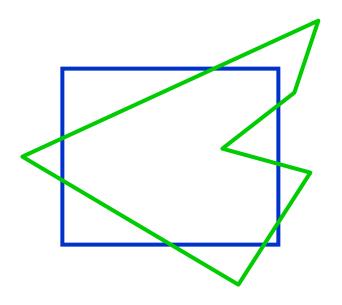
Polygon Clipping

- not just clipping all boundary lines
 - may have to introduce new line segments



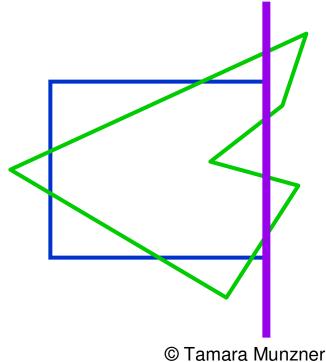
basic idea:

- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped



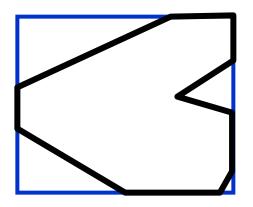
basic idea:

- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

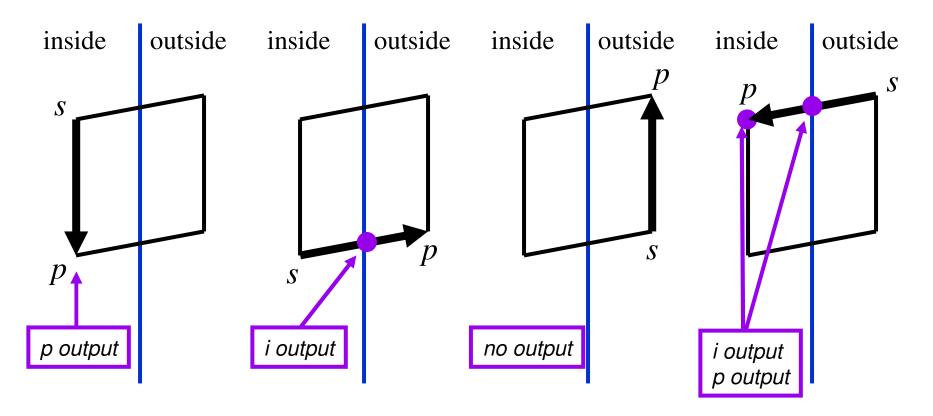


basic idea:

- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped



edge from s to p takes one of four cases:
 (blue line can be a line or a plane)



University of British Columbia CPSC 414 Computer Graphics

Rotations and Quaternions

Camera Movement Hints

- change viewing transformation
 - don't try doing this with perspective xform!
- methods
 - gluLookAt
 - direct camera control using rotate/translate
- camera motion opposite of object motion
 - rotate world by a = orbit camera by -a

Parameterizing Rotations

- Straightforward in 2D
 - A scalar, θ , represents rotation in plane
- More complicated in 3D
 - Three scalars are required to define orientation
 - Note that three scalars are also required to define position
 - Objects free to translate and tumble in 3D have 6 degrees of freedom (DOF)

Representing 3 Rotational DOFs

- 3x3 Matrix (9 DOFs)
 - Rows of matrix define orthogonal axes
- Euler Angles (3 DOFs)
 - Rot x + Rot y + Rot z
- Axis-angle (4 DOFs)
 - Axis of rotation + Rotation amount
- Quaternion (4 DOFs)
 - 4 dimensional complex numbers

3x3 Rotation Matrix

- 9 DOFs must reduce to 3
- Rows must be unit length (-3 DOFs)
- Rows must be orthogonal (-3 DOFs)
- Drifting matrices is very bad
 - Numerical errors results when trying to gradually rotate matrix by adding derivatives
 - Resulting matrix may scale / shear
 - Gram-Schmidt algorithm will re-orthogonalize
- Difficult to interpolate between matrices
 - How would you do it?

Rotation Matrix

 general rotation can be represented by a single 3x3 matrix

- problem:

- length preserving (isometric)
- reflection preserving
- orthonormal

problem:

$$R = \begin{bmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{bmatrix}$$

- property: rows and columns are orthonormal (unit length and perpendicular to each other)
- linear interpolation doesn't maintain this property

Rotation Matrices Not Interpolatable

interpolate linearly from +90 to -90 in y

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

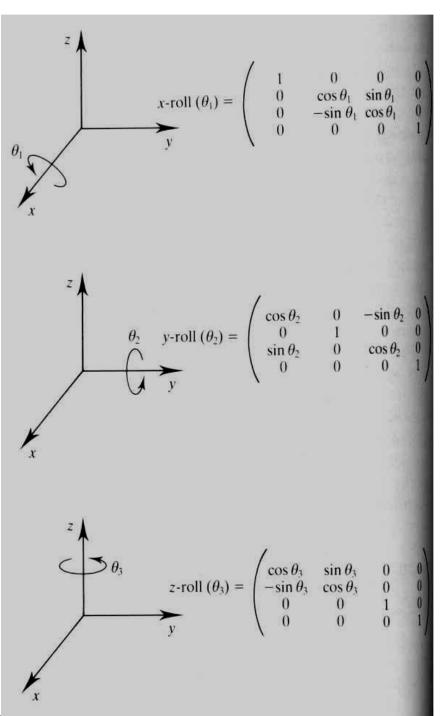
halfway through component interpolation

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- problem 1: not a rotation matrix anymore!
 - not orthonormal, x flattened out

Euler Angles

- $(\theta_x, \theta_y, \theta_z) = R_z R_y R_x$
 - Rotate θ_x degrees about x-axis
 - Rotate θ_y degrees about y-axis
 - Rotate θ_z degrees about z-axis
- Axis order is not defined
 - (y, z, x), (x, z, y), (z, y,x)... all legal
 - Pick one



Week 9, Wed 29 Oct 03

© Ta

Euler Angle Interpolation

- solution 1: can interpolate angles individually
- problem 2: interpolation between two Euler angles is not unique
- ex: (x, y, z) rotation
 - (0, 0, 0) to (180, 0, 0) vs. (0, 0, 0) to (0, 180, 180)
 - interpolation about different axes are not independent
 - Cartesian coordinates are independent of one another, but Euler angles are not

Interpolation

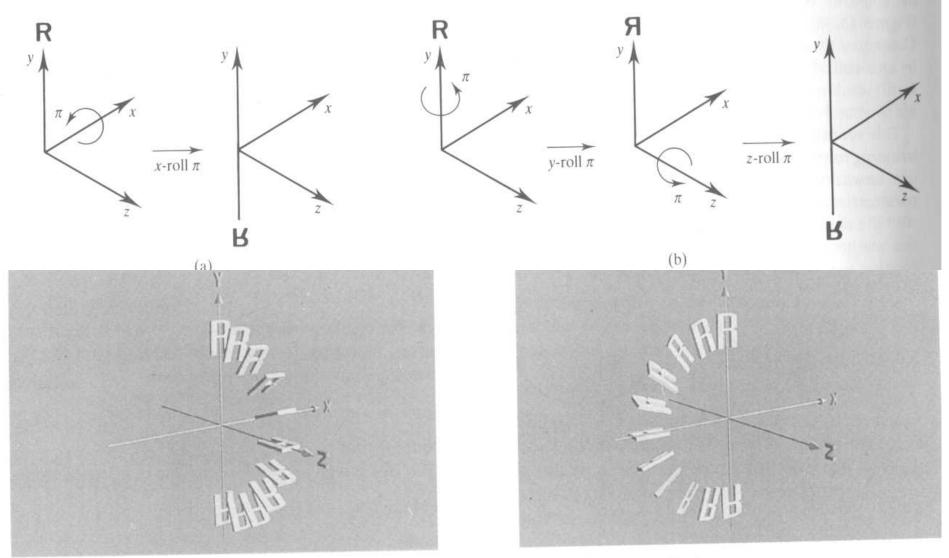
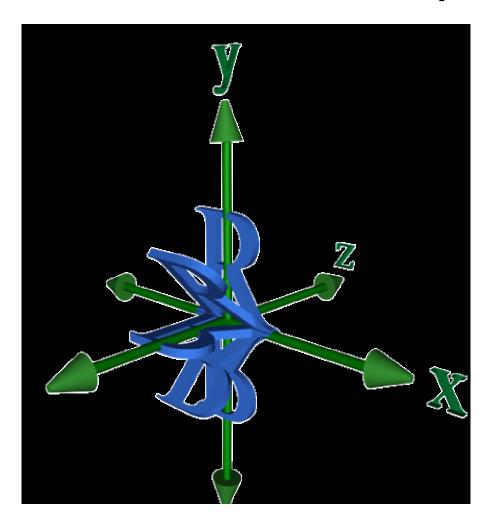
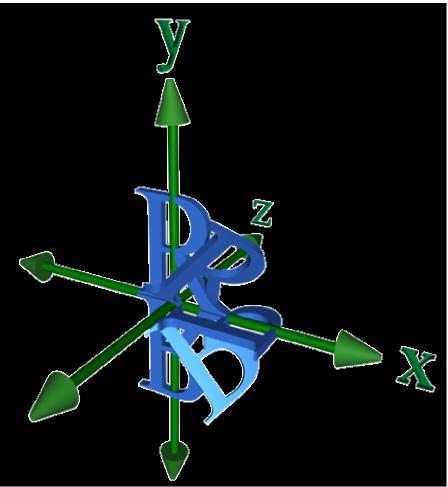


Figure 15.19 Euler angle parametrization. (a) A single x-roll of π . (b) A y-roll of π followed by a z-roll of π .

Interpolation

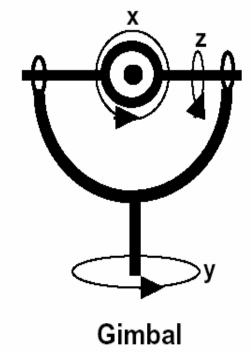




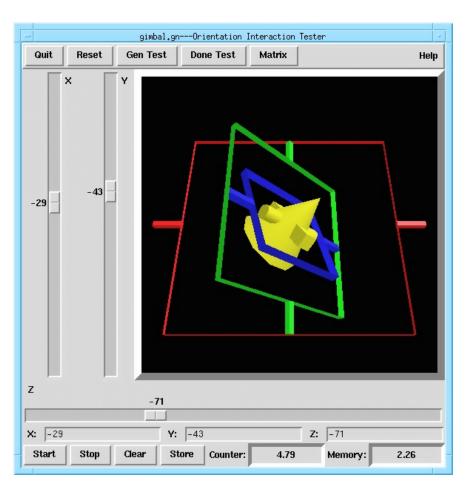
Euler Angles

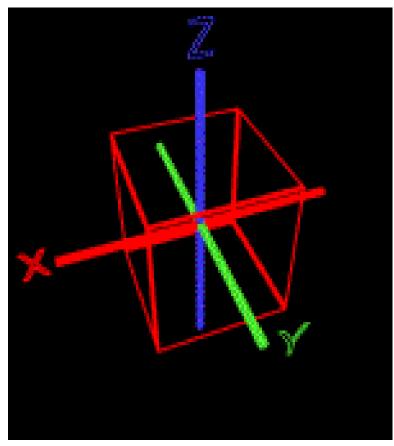
- Problem 3: Gimbal Lock
 - term derived from mechanical problem that arises in gimbal mechanism that supports a compass or a gyro

gimbal: hardware implementation of Euler angles (used for mounting gyroscopes and globes)



Gimbal Lock



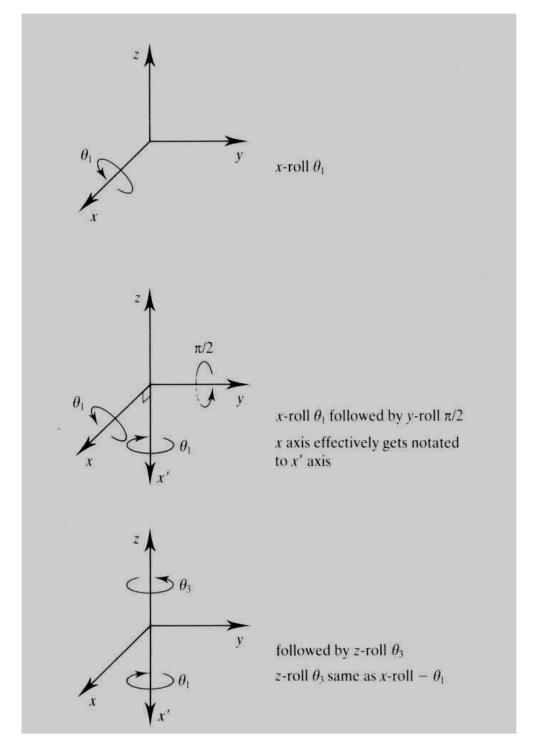


http://www.anticz.com/eularqua.htm

Gimbal Lock

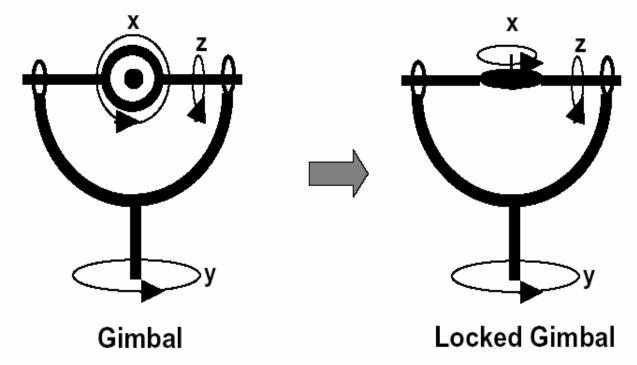
- Occurs when two axes are aligned
- Second and third rotations have effect of transforming earlier rotations
 - If Rot y = 90 degrees, Rot z == -Rot x

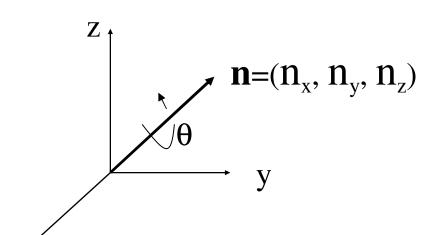
[demo]



Locked Gimbal

•Hardware implementation of Euler angles (used for mounting gyroscopes and alobes)





A counter-clockwise (right-handed) rotation θ about the axis specified by the unit vector $\mathbf{n} = (n_x, n_v, n_z)$

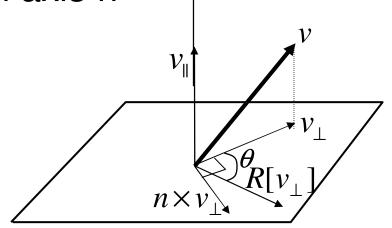
X

- Define an axis of rotation (x, y, z) and a rotation about that axis, θ: R(θ, n)
- 4 degrees of freedom specify 3 rotational degrees of freedom because axis of rotation is constrained to be a unit vector

Angular displacement

• (θ,n) defines an angular displacement of θ about an axis n

$$\begin{aligned} v_{\parallel} &= (n \cdot v)n & v_{\perp} &= v - v_{\parallel} \\ R[v_{\perp}] &= v_{\perp} \cos \theta + (n \times v_{\perp}) \sin \theta \\ &= v_{\perp} \cos \theta + (n \times v) \sin \theta \\ R[v_{\parallel}] &= v_{\parallel} \end{aligned}$$



n

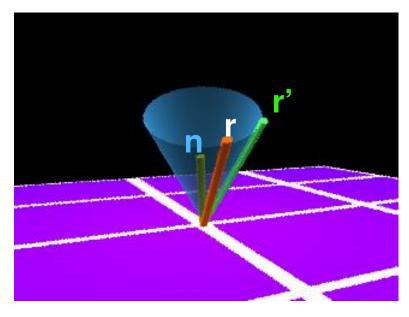
$$R[v] = R[v_{\parallel} + v_{\perp}] = R[v_{\parallel}] + R[v_{\perp}] = v_{\parallel} + v_{\perp} \cos \theta + (n \times v) \sin \theta$$
$$= (n \cdot v)n + (v - (n \cdot v)n) \cos \theta + (n \times v) \sin \theta$$
$$= v \cos \theta + n(n \cdot v)(1 - \cos \theta) + (n \times v) \sin \theta$$

Given

- r Vector in space to rotate
- n Unit-length axis in space about which to rotate
- θ The amount about n to rotate

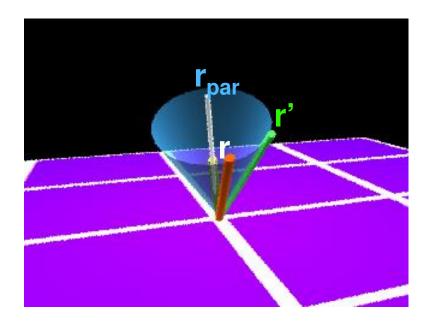
Solve

r' – The rotated vector



- step 1
 - compute r_{par}, an extended version of the rotation axis n

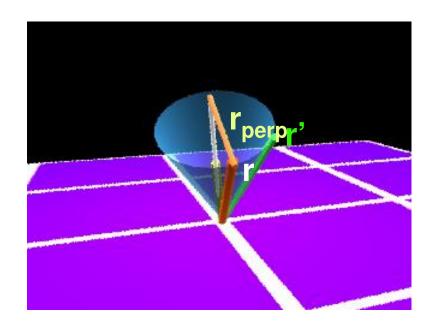
$$r_{par} = (n \cdot r) n$$



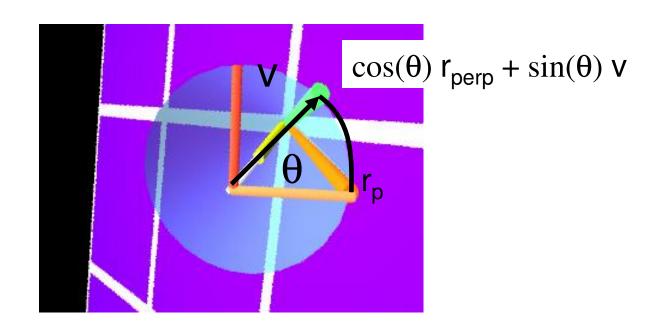
Compute r_{perp}

•
$$r_{perp} = r - r_{par} =$$

 $r - (n \cdot r) n$



- Compute v, a vector perpendicular to r_{par}, r_{perp}
- Use v and r_{perp} and θ to compute r'



Angular Displacement

R(θ, n) is the rotation matrix to apply to a vector
 v , then,

$$R[v]=v\cos\theta + n(n.v)(1-\cos\theta) + (nxv)\sin\theta$$

- It guarantees a simple steady rotation between any two key orientations
- It defines moves that are independent of the choice of the coordinate system

solutions

- any orientation can be represented by a 4-tuple angle, vector(x,y,z)
- can interpolate the angle and axis separately
- no gimbal lock problems!

problems

- no easy way to determine how to concatenate many axis-angle rotations that result in final desired axis-angle rotation
 - so can't efficiently compose rotation, must convert to matrices first!

Quaternions

- extend the concept of rotation in 3D to 4D
- avoids the problem of "gimbal-lock" and allows for the implementation of smooth and continuous rotation
- in effect, they may be considered to add a additional rotation angle to spherical coordinates ie. longitude, latitude and rotation angles
- a quaternion is defined using four floating point values |x y z w|. These are calculated from the combination of the three coordinates of the rotation axis and the rotation angle.

Quaternions Definition

- Extension of complex numbers
- 4-tuple of real numbers
 - -s,x,y,z or [s,v]
 - -s is a scalar
 - v is a vector
- Same information as axis/angle but in a different form
- Can be viewed as an original orientation or a rotation to apply to an object

Quaternion

- Extension of complex numbers: a + ib
 - remember $i^2 = -1$
- Quaternion:
 - -Q = a + bi + cj + dk
 - Where $i^2 = j^2 = k^2 = -1$ and ij = k and ji = -k
 - Represented as: $q = (s, \mathbf{v}) = s + v_x i + v_y j + v_z k$
- Invented by Sir William Hamilton (1843)
 - carved equation into Dublin bridge when discovered after decade of work

Quaternion

- •A quaternion is a 4-D unit vector q = [x y z w]
 - It lies on the unit hypersphere $x^2 + y^2 + z^2 + w^2 = 1$
- •For rotation about (unit) axis v by angle θ
 - vector part = $(\sin \theta/2) v = [x y z]$
 - scalar part = (cos $\theta/2$) = w
 - $(\sin(\theta/2) n_x, \sin(\theta/2) n_y, \sin(\theta/2) n_z, \cos(\theta/2))$
- Only a unit quaternion encodes a rotation
 - must normalize!

Quaternion

- Rotation matrix corresponding to a quaternion:
- -[xyzw] =

$$\begin{bmatrix} 1-2y^{2}-2z^{2} & 2xy+2wz & 2xz-2wy \\ 2xy-2wz & 1-2x^{2}-2z^{2} & 2yz+2wx \\ 2xz+2wy & 2yz-2wx & 1-2x^{2}-2y^{2} \end{bmatrix}$$

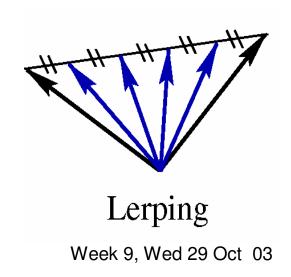
- Quaternion Multiplication
- $q_1 * q_2 = [\mathbf{v_1}, w_1] * [\mathbf{v_2}, w_2] = [(w_1 v_2 + w_2 v_1 + (v_1 \times v_2)), w_1 w_2 v_1 \cdot v_2]$
- quaternion * quaternion = quaternion
- this satisfies requirements for mathematical group
- Rotating object twice according to two different quaternions is equivalent to one rotation according to product of two quaternions

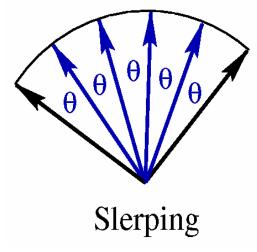
Quaternion Example

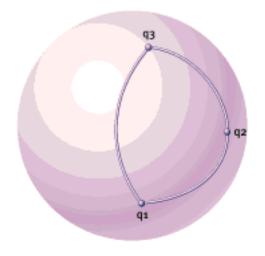
- $(\sin(\theta/2) n_x, \sin(\theta/2) n_y, \sin(\theta/2) n_z, \cos(\theta/2))$
- X-roll of π radians [90 º]
 - $-\left(\sin\left(\pi/2\right)(1,\,0,\,0),\,\cos\left(\pi/2\right)\right)=\left(\,(1,\,0,\,0),\,0\,\right)$
- Y-roll Of π
 - -((0, 1, 0), 0)
- Z-roll of π
 - -((0,0,1),0)
- $R_y(\pi)$ followed by $R_z(\pi)$ Week a Very 29 Act 0 times ((0 Tamping Mynzher)

Quaternion Interpolation

- biggest advantage of quaternions
 - cannot linearly interpolate (lerp) between two quaternions because it would speed up in middle
 - instead, spherical linear interpolation, (slerp)
 - ensure vectors remain on the hypersphere
 - step through using constant angles







SLERP

- Quaternion is a point on the 4-D unit sphere
 - interpolating rotations requires a unit quaternion at each step
 - another point on the 4-D unit sphere
 - move with constant angular velocity along the great circle between two points
- •Any rotation is defined by 2 quaternions, so pick the shortest SLERP
- •To interpolate more than two points, solve a nonlinear variational constrained optimization
 - Ken Shoemake in SIGGRAPH '85 (www.acm.org/dl)

Quaternion Libraries

- Gamasutra
 - Code, explanatory article
 - Registration required

http://www.gamasutra.com/features/19980703/quaternions_01.htm

Evaluating Quaternions

Advantages:

- Flexible.
- No parametrization singularities (gimbal lock)
- Smooth consistent interpolation of orientations.
- Simple and efficient composition of rotations.

Disadvantages:

- Each orientation is represented by two quaternions.
- Complex!

Summary

- 3x3 matrices
 - drifting, can't interpolate
- Euler angles
 - gimbal lock
- axis-angle
 - can't concatenate or interpolate
- quaternions
 - solve all problems, but complex

Project Strategy Suggestion

debug basics with simple euler angles

– with single drag, does view change the right way?

then can add quaternions