Rotations and Quaternions
Week 9, Wed 29 Oct 2003
Clipping recap
Clipping

- analytically calculating the portions of primitives within the viewport
Clipping Lines To Viewport

- combining trivial accepts/rejects
 - trivially accept lines with both endpoints inside all edges of the viewport
 - trivially reject lines with both endpoints outside the same edge of the viewport
 - otherwise, reduce to trivial cases by splitting into two segments
Cohen-Sutherland Line Clipping

- outcodes
 - 4 flags encoding position of a point relative to top, bottom, left, and right boundary

- $OC(p1)=0010$
- $OC(p2)=0000$
- $OC(p3)=1001$
Polygon Clipping

- not just clipping all boundary lines
 - may have to introduce new line segments
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

• basic idea:
 – consider each edge of the viewport individually
 – clip the polygon against the edge equation
 – after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- edge from s to p takes one of four cases:
 (blue line can be a line or a plane)

1. s inside, p outside
2. s outside, p inside
3. s inside, p inside
4. s outside, p outside

- p output
- i output
- no output
- i output, p output
Rotations and Quaternions
Camera Movement Hints

• change viewing transformation
 – don’t try doing this with perspective xform!
• methods
 – gluLookAt
 – direct camera control using rotate/translate
• camera motion opposite of object motion
 – rotate world by $a = \text{orbit camera by } -a$
Parameterizing Rotations

• Straightforward in 2D
 – A scalar, θ, represents rotation in plane

• More complicated in 3D
 – Three scalars are required to define orientation
 – Note that three scalars are also required to define position
 – Objects free to translate and tumble in 3D have 6 degrees of freedom (DOF)
Representing 3 Rotational DOFs

- **3x3 Matrix (9 DOFs)**
 - Rows of matrix define orthogonal axes
- **Euler Angles (3 DOFs)**
 - Rot x + Rot y + Rot z
- **Axis-angle (4 DOFs)**
 - Axis of rotation + Rotation amount
- **Quaternion (4 DOFs)**
 - 4 dimensional complex numbers
3x3 Rotation Matrix

- 9 DOFs must reduce to 3
- Rows must be unit length (-3 DOFs)
- Rows must be orthogonal (-3 DOFs)
- Drifting matrices is very bad
 - Numerical errors results when trying to gradually rotate matrix by adding derivatives
 - Resulting matrix may scale / shear
 - Gram-Schmidt algorithm will re-orthogonalize
- Difficult to interpolate between matrices
 - How would you do it?
Rotation Matrix

• general rotation can be represented by a single 3x3 matrix
 – length preserving (isometric)
 – reflection preserving
 – orthonormal

• problem:
 – property: rows and columns are orthonormal (unit length and perpendicular to each other)
 – linear interpolation doesn’t maintain this property
Rotation Matrices Not Interpolatable

- interpolate linearly from +90 to -90 in y
 \[
 \begin{bmatrix}
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 -1 & 0 & 0 \\
 \end{bmatrix}
 \quad \quad
 \begin{bmatrix}
 0 & 0 & -1 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 \end{bmatrix}
 \]

- halfway through component interpolation
 \[
 \begin{bmatrix}
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0 \\
 \end{bmatrix}
 \]

 - problem 1: not a rotation matrix anymore!
 - not orthonormal, x flattened out
Euler Angles

- $(\theta_x, \theta_y, \theta_z) = R_z R_y R_x$
 - Rotate θ_x degrees about x-axis
 - Rotate θ_y degrees about y-axis
 - Rotate θ_z degrees about z-axis

- Axis order is not defined
 - $(y, z, x), (x, z, y), (z, y, x)$...
 - all legal
 - Pick one

Figure 15.15 The principal rotation matrices.
Euler Angle Interpolation

- **solution 1**: can interpolate angles individually
- **problem 2**: interpolation between two Euler angles is not unique
- **ex**: (x, y, z) rotation
 - $(0, 0, 0)$ to $(180, 0, 0)$ vs. $(0, 0, 0)$ to $(0, 180, 180)$
 - interpolation about different axes are not independent
 - Cartesian coordinates are independent of one another, but Euler angles are not
Interpolation

Figure 15.19 Euler angle parametrization. (a) A single x-roll of π. (b) A y-roll of π followed by a z-roll of π.
Interpolation
Euler Angles

• **Problem 3: Gimbal Lock**
 – term derived from mechanical problem that arises in gimbal mechanism that supports a compass or a gyro

 gimbal: hardware implementation of Euler angles (used for mounting gyroscopes and globes)
Gimbal Lock

http://www.anticz.com/eularqua.htm
Gimbal Lock

• Occurs when two axes are aligned
• Second and third rotations have effect of transforming earlier rotations
 – If Rot y = 90 degrees, Rot z == -Rot x

[demo]
Locked Gimbal

- Hardware implementation of Euler angles (used for mounting gyroscopes and globes)
Axis-angle Rotation

A counter-clockwise (right-handed) rotation \(\theta \) about the axis specified by the unit vector \(\mathbf{n} = (n_x, n_y, n_z) \)
Axis-angle Notation

- Define an axis of rotation \((x, y, z)\) and a rotation about that axis, \(\theta\): \(R(\theta, \mathbf{n})\)
- 4 degrees of freedom specify 3 rotational degrees of freedom because axis of rotation is constrained to be a unit vector
Angular displacement

• \((\theta, n)\) defines an angular displacement of \(\theta\) about an axis \(n\)

\[
v_{\parallel} = (n \cdot v)n \quad v_{\perp} = v - v_{\parallel}
\]
\[
R[v_{\perp}] = v_{\perp} \cos \theta + (n \times v_{\perp}) \sin \theta
\]
\[
= v_{\perp} \cos \theta + (n \times v) \sin \theta
\]
\[
R[v_{\parallel}] = v_{\parallel}
\]

\[
R[v] = R[v_{\parallel} + v_{\perp}] = R[v_{\parallel}] + R[v_{\perp}] = v_{\parallel} + v_{\perp} \cos \theta + (n \times v) \sin \theta
\]
\[
= (n \cdot v)n + (v - (n \cdot v)n) \cos \theta + (n \times v) \sin \theta
\]
\[
= v \cos \theta + n(n \cdot v)(1 - \cos \theta) + (n \times v) \sin \theta
\]
Axis-angle Rotation

Given
- r – Vector in space to rotate
- n – Unit-length axis in space about which to rotate
- θ – The amount about n to rotate

Solve
- r' – The rotated vector
Axis-angle Rotation

• step 1
 – compute \(r_{\text{par}} \), an extended version of the rotation axis \(n \)

\[
r_{\text{par}} = (n \cdot r) \ n
\]
Axis-angle Rotation

- Compute r_{perp}

- $r_{\text{perp}} = r - r_{\text{par}} = r - (n \cdot r) n$
Axis-angle Rotation

- Compute v, a vector perpendicular to r_{par}, r_{perp}
- Use v and r_{perp} and θ to compute r'

$$v\cos(\theta) r_{perp} + \sin(\theta) v$$
Angular Displacement

• $R(\theta, \mathbf{n})$ is the rotation matrix to apply to a vector \mathbf{v}, then,

$$R[\mathbf{v}] = \mathbf{v} \cos \theta + \mathbf{n}(\mathbf{n} \cdot \mathbf{v})(1 - \cos \theta) + (\mathbf{n} \times \mathbf{v}) \sin \theta$$

 – It guarantees a simple steady rotation between any two key orientations
 – It defines moves that are independent of the choice of the coordinate system
Axis-angle Notation

• solutions
 – any orientation can be represented by a 4-tuple angle, vector(x,y,z)
 – can interpolate the angle and axis separately
 – no gimbal lock problems!

• problems
 – no easy way to determine how to concatenate many axis-angle rotations that result in final desired axis-angle rotation
 • so can’t efficiently compose rotation, must convert to matrices first!
Quaternions

• extend the concept of rotation in 3D to 4D

• avoids the problem of "gimbal-lock" and allows for the implementation of smooth and continuous rotation

• in effect, they may be considered to add a additional rotation angle to spherical coordinates ie. longitude, latitude and rotation angles

• a quaternion is defined using four floating point values \(|x\ y\ z\ w| \). These are calculated from the combination of the three coordinates of the rotation axis and the rotation angle.
Quaternions Definition

- Extension of complex numbers
- 4-tuple of real numbers
 - s, x, y, z or [s, v]
 - s is a scalar
 - v is a vector
- Same information as axis/angle but in a different form
- Can be viewed as an original orientation or a rotation to apply to an object
Quaternion

• Extension of complex numbers: \(a + ib \)
 – remember \(i^2 = -1 \)

• Quaternion:
 – \(Q = a + bi + cj + dk \)
 • Where \(i^2 = j^2 = k^2 = -1 \) and \(ij = k \) and \(ji = -k \)
 – Represented as: \(q = (s, v) = s + v_xi + v_yj + v_zk \)

• Invented by Sir William Hamilton (1843)
 – carved equation into Dublin bridge when discovered after decade of work
Quaternion

• A quaternion is a 4-D unit vector $q = [x \ y \ z \ w]$
 – It lies on the unit hypersphere $x^2 + y^2 + z^2 + w^2 = 1$
• For rotation about (unit) axis v by angle θ
 – vector part = $(\sin \theta/2) \ v = [x \ y \ z]$
 – scalar part = $(\cos \theta/2) \ = w$
 – $(\sin(\theta/2) \ n_x, \ sin(\theta/2) \ n_y, \ sin(\theta/2) \ n_z, \ cos \ (\theta/2))$
• Only a unit quaternion encodes a rotation
 – must normalize!
Quaternion

• Rotation matrix corresponding to a quaternion:
 \[[x \ y \ z \ w] = \\
 \begin{bmatrix}
 1-2y^2-2z^2 & 2xy+2wz & 2xz-2wy \\
 2xy-2wz & 1-2x^2-2z^2 & 2yz+2wx \\
 2xz+2wy & 2yz-2wx & 1-2x^2-2y^2 \\
 \end{bmatrix} \]

• Quaternion Multiplication
 \[q_1 \ast q_2 = [v_1, w_1] \ast [v_2, w_2] = \\
 [(w_1v_2+w_2v_1+ (v_1 \times v_2)), w_1w_2-v_1.v_2] \]
 \[\text{ quaternion} \ast \text{ quaternion} = \text{ quaternion} \]
 \[\text{ this satisfies requirements for mathematical } \textit{group} \]
 \[\text{ Rotating object twice according to two different quaternions is equivalent to one rotation according to product of two quaternions} \]
Quaternion Example

• \((\sin(\theta/2) \, n_x, \sin(\theta/2) \, n_y, \sin(\theta/2) \, n_z, \cos(\theta/2))\)

• X-roll of \(\pi\) radians [90°]
 \(- (\sin(\pi/2) \, (1, 0, 0), \cos(\pi/2)) = (\, (1, 0, 0), 0)\)

• Y-roll of \(\pi\)
 \(- (\, (0, 1, 0), 0)\)

• Z-roll of \(\pi\)
 \(- (\, (0, 0, 1), 0)\)

• \(R_y(\pi)\) followed by \(R_z(\pi)\)
 \(- (\, (0, 1, 0), 0)\) times \(- (\, (0, 0, 1), 0)\)
Quaternion Interpolation

• biggest advantage of quaternions
 – cannot linearly interpolate (lerp) between two quaternions because it would speed up in middle
 – instead, spherical linear interpolation, (slerp)
 • ensure vectors remain on the hypersphere
 • step through using constant angles
SLERP

• Quaternion is a point on the 4-D unit sphere
 – interpolating rotations requires a unit quaternion at each step
 • another point on the 4-D unit sphere
 – move with constant angular velocity along the great circle between two points

• Any rotation is defined by 2 quaternions, so pick the shortest SLERP

• To interpolate more than two points, solve a non-linear variational constrained optimization
 – Ken Shoemake in SIGGRAPH ’85 (www.acm.org/dl)
Quaternion Libraries

• Gamasutra
 – Code, explanatory article
 – Registration required

http://www.gamasutra.com/features/19980703/quaternions_01.htm
Evaluating Quaternions

• Advantages:
 – Flexible.
 – No parametrization singularities (gimbal lock)
 – Smooth consistent interpolation of orientations.
 – Simple and efficient composition of rotations.

• Disadvantages:
 – Each orientation is represented by two quaternions.
 – Complex!
Summary

• 3x3 matrices
 – drifting, can’t interpolate
• Euler angles
 – gimbal lock
• axis-angle
 – can’t concatenate or interpolate
• quaternions
 – solve all problems, but complex
Project Strategy Suggestion

• debug basics with simple euler angles
 – with single drag, does view change the right way?

• then can add quaternions