Visibility
Week 9, Fri 31 Oct 2003
News

• extra office hours
 – Thu 5:30-6:30
 – Friday 11-1:30, 4:30-5:30
 – Mon 10:30-12:30, 1-3
 – (normal lab hours: Thu 12-1, Fri 10-11)

• don’t use graphics remotely!
 – or else console person can’t use graphics
 – reboot if you have this problem

• this week’s labs:
 – picking, texturing details
Rotation Methods recap
Representing 3 Rotational DOFs

- 3x3 Matrix (9 DOFs)
 - Rows of matrix define orthogonal axes
- Euler Angles (3 DOFs)
 - Rot x + Rot y + Rot z
- Axis-angle (4 DOFs)
 - Axis of rotation + Rotation amount
- Quaternion (4 DOFs)
 - 4 dimensional complex numbers
Rotation Matrices Won’t Interpolate

• interpolate linearly from +90 to -90 in y

\[
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{bmatrix}
\quad \quad \quad
\begin{bmatrix}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

• halfway through component interpolation

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

– problem 1: not a rotation matrix anymore!
 • not orthonormal, x flattened out
Euler Angles Have Gimbal Lock

- keep rotation angle for each axis
- problem 2: gimbal lock
 - occurs when two axes are aligned
- second and third rotations have effect of transforming earlier rotations
 - if Rot y = 90 degrees, Rot z == -Rot x
Gimbal Lock

http://www.anticz.com/eularqua.htm
Axis-angle Won’t Concatenate

A counter-clockwise (right-handed) rotation \(\theta \) about the axis specified by the unit vector \(\mathbf{n} = (n_x, n_y, n_z) \)

- problem 3
 - no easy way to determine how to concatenate
Quaternions

• quaternion is a 4-D unit vector $q = [x \ y \ z \ w]$
 – lies on the unit hypersphere $x^2 + y^2 + z^2 + w^2 = 1$

• for rotation about (unit) axis v by angle θ
 – vector part $= (\sin \frac{\theta}{2}) \ v \ = [x \ y \ z]$
 – scalar part $= (\cos \frac{\theta}{2}) \ = w$

• rotation matrix

\[
\begin{bmatrix}
1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy \\
2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx \\
2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2
\end{bmatrix}
\]

• quaternion multiplication $q_1 \cdot q_2 =
\begin{bmatrix} v_1, w_1 \end{bmatrix} \cdot \begin{bmatrix} v_2, w_2 \end{bmatrix} = [(w_1v_2 + w_2v_1 + (v_1 \times v_2)), w_1w_2 - v_1 \cdot v_2]
Rotation Methods Summary

• 3x3 matrices
 – good: simple. bad: drifting, can’t interpolate

• Euler angles
 – good: can interpolate, no drift
 – bad: gimbal lock

• axis-angle
 – good: no gimbal lock, can interpolate
 – bad: can’t concatenate

• quaternions
 – good: solve all problems. bad: complex
Visibility
Rendering Pipeline

- modeling transformations
- viewing transformations
- projection transformations
- clipping
- scan conversion
- lighting
- shading

• we now know everything about how to draw a polygon on the screen, except visible surface determination
Invisible Primitives

• **why might a polygon be invisible?**
 – polygon outside the *field of view / frustum*
 – polygon is *backfacing*
 – polygon is *occluded* by object(s) nearer the viewpoint

• for efficiency reasons, we want to avoid spending work on polygons outside field of view or backfacing

• for efficiency and correctness reasons, we need to know when polygons are occluded
View Frustum Clipping

• remove polygons entirely outside frustum
 – note that this includes polygons “behind” eye (actually behind near plane)

• pass through polygons entirely inside frustum

• modify remaining polygons to include only portions intersecting view frustum
Back-Face Culling

• most objects in scene are typically “solid”

• rigorously: orientable closed manifolds
 – orientable: must have two distinct sides
 • cannot self-intersect
 • a sphere is orientable since has two sides, 'inside' and 'outside'.
 • a Mobius strip or a Klein bottle is not orientable
 – closed: cannot “walk” from one side to the other
 • sphere is closed manifold
 • plane is not
Back-Face Culling

• most objects in scene are typically “solid”
• rigorously: orientable closed manifolds
 – manifold: local neighborhood of all points isomorphic to disc
 – boundary partitions space into interior & exterior
Manifold

• examples of manifold objects:
 – sphere
 – torus
 – well-formed CAD part
Back-Face Culling

• examples of non-manifold objects:
 – a single polygon
 – a terrain or height field
 – polyhedron w/ missing face
 – anything with cracks or holes in boundary
 – one-polygon thick lampshade
Back-Face Culling

• on the surface of a closed manifold, polygons whose normals point away from the camera are always occluded:

note: backface culling alone doesn’t solve the hidden-surface problem!
Back-Face Culling

• not rendering backfacing polygons improves performance
 – by how much?
 • reduces by about half the number of polygons to be considered for each pixel
Back-face Culling: VCS

first idea:
cull if $N_z < 0$

works, but sometimes
misses polygons that
should be culled

better idea:
cull if eye is below polygon plane
Back-face Culling: NDCS

works to cull if $N_z > 0$
Occlusion

• for most interesting scenes, some polygons overlap

• to render the correct image, we need to determine which polygons occlude which
Painter’s Algorithm

• simple: render the polygons from back to front, “painting over” previous polygons

– draw blue, then green, then orange

• will this work in the general case?
Painter’s Algorithm: Problems

- *intersecting polygons* present a problem
- even non-intersecting polygons can form a cycle with no valid visibility order:
Analytic Visibility Algorithms

- early visibility algorithms computed the set of visible polygon *fragments* directly, then rendered the fragments to a display:
Analytic Visibility Algorithms

• what is the minimum worst-case cost of computing the fragments for a scene composed of \(n \) polygons?

• answer: \(O(n^2) \)
Analytic Visibility Algorithms

• so, for about a decade (late 60s to late 70s) there was intense interest in finding efficient algorithms for hidden surface removal

• we’ll talk about two:
 – *Binary Space-Partition (BSP) Trees*
 – *Warnock’s Algorithm*
Binary Space Partition Trees (1979)

- BSP tree: organize all of space (hence partition) into a binary tree
 - preprocess: overlay a binary tree on objects in the scene
 - runtime: correctly traversing this tree enumerates objects from back to front
 - idea: divide space recursively into half-spaces by choosing splitting planes
 - splitting planes can be arbitrarily oriented
BSP Trees: Objects
Rendering BSP Trees

renderBSP(BSPtree *T)
 BSPtree *near, *far;
 if (eye on left side of T->plane)
 near = T->left; far = T->right;
 else
 near = T->right; far = T->left;
 renderBSP(far);
 if (T is a leaf node)
 renderObject(T)
 renderBSP(near);
BSP Trees: Objects
BSP Trees: Objects
Polygons: BSP Tree Construction

• split along the plane defined by any polygon from scene
• classify all polygons into positive or negative half-space of the plane
 – if a polygon intersects plane, split polygon into two and classify them both
• recurse down the negative half-space
• recurse down the positive half-space
Polygons: BSP Tree Traversal

- query: given a viewpoint, produce an ordered list of (possibly split) polygons from back to front:

```cpp
BSPnode::Draw(Vec3 viewpt)
    Classify viewpt: in + or - half-space of node->plane?
    /* Call that the “near” half-space */
    farchild->draw(viewpt);
    render node->polygon; /* always on node->plane */
    nearchild->draw(viewpt);
```

- intuitively: at each partition, draw the stuff on the farther side, then the polygon on the partition, then the stuff on the nearer side
Discussion: BSP Tree Cons

• no bunnies were harmed in my example
• but what if a splitting plane passes through an object?
 – split the object; give half to each node
BSP Demo

• nice demo:
 http://symbolcraft.com/graphics/bsp
Summary: BSP Trees

• pros:
 – simple, elegant scheme
 – only writes to framebuffer (no reads to see if current polygon is in front of previously rendered polygon, i.e., painters algorithm)
 • thus very popular for video games (but getting less so)

• cons:
 – computationally intense preprocess stage restricts algorithm to static scenes
 – slow time to construct tree: $O(n \log n)$ to
Warnock’s Algorithm (1969)

• elegant scheme based on a powerful general approach common in graphics: *if the situation is too complex, subdivide*
 – start with a *root viewport* and a list of all primitives (polygons)
 – then recursively:
 • clip objects to viewport
 • if number of objects incident to viewport is zero or one, visibility is trivial
 • otherwise, subdivide into smaller viewports, distribute primitives among them, and recurse
Warnock’s Algorithm

• what is the terminating condition?
• how to determine the correct visible surface in this case?
Warnock’s Algorithm

• pros:
 – very elegant scheme
 – extends to any primitive type

• cons:
 – hard to embed hierarchical schemes in hardware
 – complex scenes usually have small polygons and high depth complexity
 • thus most screen regions come down to the single-pixel case
The Z-Buffer Algorithm

- both BSP trees and Warnock’s algorithm were proposed when memory was expensive – example: first 512x512 framebuffer > $50,000!
- Ed Catmull (mid-70s) proposed a radical new approach called z-buffering.
- the big idea: resolve visibility independently at each pixel
The Z-Buffer Algorithm

• we know how to rasterize polygons into an image discretized into pixels:
The Z-Buffer Algorithm

- what happens if multiple primitives occupy the same pixel on the screen? Which is allowed to paint the pixel?
The Z-Buffer Algorithm

• idea: retain depth (Z in eye coordinates) through projection transform
 – use canonical viewing volumes
 – each vertex has z coordinate (relative to eye point) intact
The Z-Buffer Algorithm

• augment color framebuffer with Z-buffer or depth buffer which stores Z value at each pixel
 – at frame beginning, initialize all pixel depths to ∞
 – when rasterizing, interpolate depth (Z) across polygon and store in pixel of Z-buffer
 – suppress writing to a pixel if its Z value is more distant than the Z value already stored there
Interpolating Z

- edge equations: Z just another planar parameter:
 - \(z = (-D - Ax - By) / C \)
 - if walking across scanline by (Dx)
 \(z_{\text{new}} = z_{\text{old}} - (A/C)(Dx) \)

- total cost:
 - 1 more parameter to increment in inner loop
 - 3x3 matrix multiply for setup

- edge walking: just interpolate Z along edges and across spans
Z-buffer

• store \((r, g, b, z)\) for each pixel
 – typically \(8+8+8+24\) bits, can be more

 for all \(i, j\) {
 Depth\([i, j]\) = \text{MAX_DEPTH}
 Image\([i, j]\) = \text{BACKGROUND_COLOUR}
 }
 for all polygons \(P\) {
 for all pixels in \(P\) {
 if \((Z_pixel < \text{Depth}[i, j])\) {
 Image\([i, j]\) = C_pixel
 Depth\([i, j]\) = Z_pixel
 }
 }
 }
Depth Test Precision

– reminder: projective transformation maps eye-space \(z \) to generic \(z \)-range (NDC)

– simple example:

\[
T\left(\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

– thus:

\[
z_{\text{NDC}} = \frac{a \cdot z_{\text{eye}} + b}{z_{\text{eye}}} = a + \frac{b}{z_{\text{eye}}}
\]
Depth Test Precision

– therefore, depth-buffer essentially stores \(1/z\), rather than \(z\)!

– this yields precision problems with integer depth buffers:

![Graph showing z_NDC vs. n and f]
Depth Test Precision

- precision of depth buffer is bad for far objects
- depth fighting: two different depths in eye space get mapped to same depth in framebuffer
 - which object “wins” depends on drawing order and scan-conversion
- gets worse for larger ratios \(f:n \)
 - rule of thumb: \(f:n < 1000 \) for 24 bit depth buffer
Z-buffer

- hardware support in graphics cards
- poor for high-depth-complexity scenes
 - need to render all polygons, even if most are invisible

- “jaggies”: pixel staircase along edges
The A-Buffer

– antialiased, area-averaged accumulation buffer
 • z-buffer: one visible surface per pixel
 • A-buffer: linked list of surfaces

• data for each surface includes
 • RGB, Z, area-coverage percentage, ...
The Z-Buffer Algorithm

• how much memory does the Z-buffer use?
• does the image rendered depend on the drawing order?
• does the time to render the image depend on the drawing order?
• how does Z-buffer load scale with visible polygons? with framebuffer resolution?
Z-Buffer Pros

• simple!!!
• easy to implement in hardware
• polygons can be processed in arbitrary order
• easily handles polygon interpenetration
• enables *deferred shading*
 – rasterize shading parameters (e.g., surface normal) and only shade final visible fragments
Z-Buffer Cons

• lots of memory (e.g. 1280x1024x32 bits)
 – with 16 bits cannot discern millimeter differences in objects at 1 km distance
• Read-Modify-Write in inner loop requires fast memory
• hard to do analytic antialiasing
 – we don’t know which polygon to map pixel back to
• shared edges are handled inconsistently
 – ordering dependent
• hard to simulate translucent polygons
 – we throw away color of polygons behind closest one
Visibility

– object space algorithms
 • explicitly compute visible portions of polygons
 • painter’s algorithm: depth-sorting, BSP trees

– image space algorithms
 • operate on pixels or scan-lines
 • visibility resolved to the precision of the display
 • Z-buffer
Hidden Surface Removal

• 2 classes of methods
 – image-space algorithms
 • perform visibility test for very pixel independently
 • limited to resolution of display
 • performed late in rendering pipeline
 – object-space algorithms
 • determine visibility on a polygon level in camera coordinates
 • resolution independent
 • early in rendering pipeline (after clipping)
 • expensive