
University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 1

Visibility
Week 9, Fri 31 Oct 2003

Week 9, Fri 31 Oct 03 © Tamara Munzner 2

News
• extra office hours

– Thu 5:30-6:30
– Friday 11-1:30, 4:30-5:30
– Mon 10:30-12:30, 1-3
– (normal lab hours: Thu 12-1, Fri 10-11)

• don’t use graphics remotely!
– or else console person can’t use graphics
– reboot if you have this problem

• this week’s labs:
– picking, texturing details

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 3

Rotation Methods recap

Week 9, Fri 31 Oct 03 © Tamara Munzner 4

Representing 3 Rotational DOFs
• 3x3 Matrix (9 DOFs)

– Rows of matrix define orthogonal axes
• Euler Angles (3 DOFs)

– Rot x + Rot y + Rot z
• Axis-angle (4 DOFs)

– Axis of rotation + Rotation amount
• Quaternion (4 DOFs)

– 4 dimensional complex numbers

Week 9, Fri 31 Oct 03 © Tamara Munzner 5

Rotation Matrices Won’t Interpolate
• interpolate linearly from +90 to -90 in y

• halfway through component interpolation

– problem 1: not a rotation matrix anymore!
• not orthonormal, x flattened out

� �
� �
� �
� �� �

0 0 1
0 1 0
-1 0 0

� �
� �
� �
� �� �

0 0 -1
0 1 0
1 0 0

� �
� �
� �
� �� �

0 0 0
0 1 0
0 0 0

Week 9, Fri 31 Oct 03 © Tamara Munzner 6

Euler Angles Have
Gimbal Lock

• keep rotation angle for each axis
• problem 2: gimbal lock

– occurs when two axes are aligned
• second and third rotations have

effect of transforming earlier
rotations
– if Rot y = 90 degrees,

Rot z == -Rot x

Week 9, Fri 31 Oct 03 © Tamara Munzner 7

Gimbal Lock

http://www.anticz.com/eularqua.htm

Week 9, Fri 31 Oct 03 © Tamara Munzner 8

Axis-angle Won’t Concatenate

x

y
θ

z
n=(nx, ny, nz)

A counter-clockwise (right-handed)
rotation θ about the axis specified
by the unit vector n=(nx, ny, nz)

• problem 3
– no easy way to determine how to concatenate

Week 9, Fri 31 Oct 03 © Tamara Munzner 9

Quaternions
• quaternion is a 4-D unit vector q = [x y z w]
– lies on the unit hypersphere x2 + y2 + z2 + w2 = 1

• for rotation about (unit) axis v by angle θ
– vector part = (sin θ/2) v = [x y z]
– scalar part = (cos θ/2) = w

• rotation matrix

• quaternion multiplication q1 * q2 =
[v1, w1] * [v2, w2] = [(w1v2+w2v1+ (v1 x v2)), w1w2-v1.v2]

�
�
�

�

�

�
�
�

�

�

−−−+
+−−−
−+−−

22

22

22

2212222
2222122

2222221

yxwxyzwyxz

wxyzzxwzxy

wyxzwzxyzy

Week 9, Fri 31 Oct 03 © Tamara Munzner 10

Rotation Methods Summary
• 3x3 matrices

– good: simple. bad: drifting, can’t interpolate

• Euler angles
– good: can interpolate, no drift
– bad: gimbal lock

• axis-angle
– good: no gimbal lock, can interpolate
– bad: can’t concatenate

• quaternions
– good: solve all problems. bad: complex

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 11

Visibility

Week 9, Fri 31 Oct 03 © Tamara Munzner 12

Rendering Pipeline
– modeling transformations
– viewing transformations
– projection transformations
– clipping
– scan conversion
– lighting
– shading

• we now know everything about how to
draw a polygon on the screen, except
visible surface determination

Week 9, Fri 31 Oct 03 © Tamara Munzner 13

Invisible Primitives
• why might a polygon be invisible?

– polygon outside the field of view / frustum
– polygon is backfacing
– polygon is occluded by object(s) nearer the viewpoint

• for efficiency reasons, we want to avoid
spending work on polygons outside field of view
or backfacing

• for efficiency and correctness reasons, we need
to know when polygons are occluded

Week 9, Fri 31 Oct 03 © Tamara Munzner 14

View Frustum Clipping
• remove polygons entirely outside frustum

– note that this includes polygons “behind” eye
(actually behind near plane)

• pass through polygons
entirely inside frustum

• modify remaining
polygons to include only
portions intersecting view
frustum

Week 9, Fri 31 Oct 03 © Tamara Munzner 15

Back-Face Culling
• most objects in scene are typically “solid”
• rigorously: orientable closed manifolds

– orientable: must have two distinct sides
• cannot self-intersect
• a sphere is orientable since has

two sides, 'inside' and 'outside'.
• a Mobius strip or a Klein bottle is

not orientable

– closed: cannot “walk” from one
side to the other

• sphere is closed manifold
• plane is not

Week 9, Fri 31 Oct 03 © Tamara Munzner 16

Back-Face Culling

Yes No

• most objects in scene are typically “solid”
• rigorously: orientable closed manifolds

– manifold: local neighborhood of all points
isomorphic to disc

– boundary partitions space into interior & exterior

Week 9, Fri 31 Oct 03 © Tamara Munzner 17

Manifold
• examples of manifold objects:

– sphere
– torus
– well-formed

CAD part

Week 9, Fri 31 Oct 03 © Tamara Munzner 18

Back-Face Culling
• examples of non-manifold objects:

– a single polygon
– a terrain or height field
– polyhedron w/ missing face
– anything with cracks or holes in boundary
– one-polygon thick lampshade

Week 9, Fri 31 Oct 03 © Tamara Munzner 19

Back-Face Culling
• on the surface of a closed manifold,

polygons whose normals point away from
the camera are always occluded:

note: backface culling
alone doesn’t solve the

hidden-surface problem!

Week 9, Fri 31 Oct 03 © Tamara Munzner 20

Back-Face Culling
• not rendering backfacing polygons

improves performance
– by how much?

• reduces by about half the number of polygons to
be considered for each pixel

Week 9, Fri 31 Oct 03 © Tamara Munzner 21

Back-face Culling: VCS

yy

zz

first idea:first idea:
cull if cull if 0<ZN

works, but sometimesworks, but sometimes
misses polygons thatmisses polygons that
should be culledshould be culled

better idea:better idea:
cull if eye is below polygon planecull if eye is below polygon plane

eyeeye

aboveabove

belowbelow

Week 9, Fri 31 Oct 03 © Tamara Munzner 22

Back-face Culling: NDCS

yy

zz eyeeye

VCSVCS

NDCSNDCS

eyeeye works to cull ifworks to cull if 0>ZN
yy

zz

Week 9, Fri 31 Oct 03 © Tamara Munzner 23

Occlusion
• for most interesting scenes, some polygons

overlap

• to render the correct image, we need to
determine which polygons occlude which

Week 9, Fri 31 Oct 03 © Tamara Munzner 24

Painter’s Algorithm
• simple: render the polygons from back to

front, “painting over” previous polygons

– draw blue, then green, then orange

• will this work in the general case?

Week 9, Fri 31 Oct 03 © Tamara Munzner 25

Painter’s Algorithm: Problems
• intersecting polygons present a problem
• even non-intersecting polygons can form a

cycle with no valid visibility order:

Week 9, Fri 31 Oct 03 © Tamara Munzner 26

Analytic Visibility Algorithms
• early visibility algorithms computed the set of

visible polygon fragments directly, then rendered
the fragments to a display:

Week 9, Fri 31 Oct 03 © Tamara Munzner 27

Analytic Visibility Algorithms
• what is the minimum worst-case cost of

computing the fragments for a scene
composed of n polygons?

• answer:
O(n2)

Week 9, Fri 31 Oct 03 © Tamara Munzner 28

Analytic Visibility Algorithms
• so, for about a decade (late 60s to late

70s) there was intense interest in finding
efficient algorithms for hidden surface
removal

• we’ll talk about two:
– Binary Space-Partition (BSP) Trees
– Warnock’s Algorithm

Week 9, Fri 31 Oct 03 © Tamara Munzner 29

Binary Space Partition Trees (1979)
• BSP tree: organize all of space (hence

partition) into a binary tree
– preprocess: overlay a binary tree on objects in

the scene
– runtime: correctly traversing this tree

enumerates objects from back to front
– idea: divide space recursively into half-spaces

by choosing splitting planes
• splitting planes can be arbitrarily oriented

Week 9, Fri 31 Oct 03 © Tamara Munzner 30

BSP Trees: Objects

Week 9, Fri 31 Oct 03 © Tamara Munzner 31

BSP Trees: Objects

Week 9, Fri 31 Oct 03 © Tamara Munzner 32

BSP Trees: Objects

Week 9, Fri 31 Oct 03 © Tamara Munzner 33

BSP Trees: Objects

Week 9, Fri 31 Oct 03 © Tamara Munzner 34

BSP Trees: Objects

Week 9, Fri 31 Oct 03 © Tamara Munzner 35

Rendering BSP Trees
renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;
renderBSP(far);
if (T is a leaf node)

renderObject(T)
renderBSP(near);

Week 9, Fri 31 Oct 03 © Tamara Munzner 36

BSP Trees: Objects

Week 9, Fri 31 Oct 03 © Tamara Munzner 37

BSP Trees: Objects

Week 9, Fri 31 Oct 03 © Tamara Munzner 38

Polygons:
BSP Tree Construction

• split along the plane defined by any
polygon from scene

• classify all polygons into positive or
negative half-space of the plane
– if a polygon intersects plane, split polygon into

two and classify them both

• recurse down the negative half-space
• recurse down the positive half-space

Week 9, Fri 31 Oct 03 © Tamara Munzner 39

Polygons:
BSP Tree Traversal

• query: given a viewpoint, produce an ordered list of
(possibly split) polygons from back to front:

BSPnode::Draw(Vec3 viewpt)
Classify viewpt: in + or - half-space of node->plane?
/* Call that the “near” half-space */

farchild->draw(viewpt);
render node->polygon; /* always on node->plane */
nearchild->draw(viewpt);

• intuitively: at each partition, draw the stuff on the farther
side, then the polygon on the partition, then the stuff on the
nearer side

Week 9, Fri 31 Oct 03 © Tamara Munzner 40

• no bunnies were harmed in my example
• but what if a splitting plane passes through

an object?
– split the object; give half to each node

Discussion: BSP Tree Cons

Ouch

Week 9, Fri 31 Oct 03 © Tamara Munzner 41

BSP Demo
• nice demo:

http://symbolcraft.com/graphics/bsp

Week 9, Fri 31 Oct 03 © Tamara Munzner 42

Summary: BSP Trees

• pros:
– simple, elegant scheme
– only writes to framebuffer (no reads to see if

current polygon is in front of previously
rendered polygon, i.e., painters algorithm)

• thus very popular for video games (but getting
less so)

• cons:
– computationally intense preprocess stage

restricts algorithm to static scenes
– slow time to construct tree: O(n log n) to

split, sort

Week 9, Fri 31 Oct 03 © Tamara Munzner 43

Warnock’s Algorithm (1969)

• elegant scheme based on a powerful general
approach common in graphics: if the situation is
too complex, subdivide
– start with a root viewport and a list of all primitives

(polygons)
– then recursively:

• clip objects to viewport
• if number of objects incident to viewport is zero or one, visibility

is trivial
• otherwise, subdivide into smaller viewports, distribute primitives

among them, and recurse

Week 9, Fri 31 Oct 03 © Tamara Munzner 44

Warnock’s Algorithm
• what is the

terminating
condition?

• how to determine
the correct
visible surface in
this case?

Week 9, Fri 31 Oct 03 © Tamara Munzner 45

Warnock’s Algorithm
• pros:

– very elegant scheme
– extends to any primitive type

• cons:
– hard to embed hierarchical schemes in hardware
– complex scenes usually have small polygons

and high depth complexity
• thus most screen regions come down to the

single-pixel case

Week 9, Fri 31 Oct 03 © Tamara Munzner 46

The Z-Buffer Algorithm
• both BSP trees and Warnock’s algorithm

were proposed when memory was expensive
– example: first 512x512 framebuffer > $50,000!

• Ed Catmull (mid-70s) proposed a radical new
approach called z-buffering.

• the big idea: resolve visibility independently
at each pixel

Week 9, Fri 31 Oct 03 © Tamara Munzner 47

The Z-Buffer Algorithm
• we know how to rasterize polygons into an

image discretized into pixels:

Week 9, Fri 31 Oct 03 © Tamara Munzner 48

The Z-Buffer Algorithm
• what happens if multiple primitives occupy

the same pixel on the screen? Which is
allowed to paint the pixel?

Week 9, Fri 31 Oct 03 © Tamara Munzner 49

The Z-Buffer Algorithm
• idea: retain depth (Z in eye coordinates)

through projection transform
– use canonical viewing volumes
– each vertex has z coordinate (relative to eye

point) intact

Week 9, Fri 31 Oct 03 © Tamara Munzner 50

The Z-Buffer Algorithm
• augment color framebuffer with Z-buffer or

depth buffer which stores Z value at each pixel
– at frame beginning, initialize all pixel depths to ∞
– when rasterizing, interpolate depth (Z) across

polygon and store in pixel of Z-buffer
– suppress writing to a pixel if its Z value is more

distant than the Z value already stored there

Week 9, Fri 31 Oct 03 © Tamara Munzner 51

Interpolating Z
• edge equations: Z just another planar

parameter:
• z = (-D - Ax – By) / C
• if walking across scanline by (Dx)

znew = zold – (A/C)(Dx)

– total cost:
• 1 more parameter to

increment in inner loop
• 3x3 matrix multiply for setup

• edge walking: just interpolate Z along
edges and across spans

Week 9, Fri 31 Oct 03 © Tamara Munzner 52

Z-buffer
•store (r,g,b,z) for each pixel
– typically 8+8+8+24 bits, can be more

for all i,j {for all i,j {
Depth[i,j] = MAX_DEPTHDepth[i,j] = MAX_DEPTH
Image[i,j] = BACKGROUND_COLOURImage[i,j] = BACKGROUND_COLOUR

} }
for all polygons P {for all polygons P {

for all pixels in P {for all pixels in P {
if (Z_pixel < Depth[i,j]) {if (Z_pixel < Depth[i,j]) {

Image[i,j] = C_pixelImage[i,j] = C_pixel
Depth[i,j] = Z_pixelDepth[i,j] = Z_pixel

} }
} }

} }

Week 9, Fri 31 Oct 03 © Tamara Munzner 53

Depth Test Precision
– reminder: projective transformation maps eye-

space z to generic z-range (NDC)
– simple example:

– thus:

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

�

−

=

�
�
�
�
�

�

	

�

�

�
�
�
�

�

�

�
�
�
�

�

�

10100
00

0010
0001

1
z

y

x

baz

y

x

T

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

�

−

=

�
�
�
�
�

�

	

�

�

�
�
�
�

�

�

�
�
�
�

�

�

10100
00

0010
0001

1
z

y

x

baz

y

x

T

eyeeye

eye
NDC z

b
a

z

bza
z +=

+⋅
=

eyeeye

eye
NDC z

b
a

z

bza
z +=

+⋅
=

Week 9, Fri 31 Oct 03 © Tamara Munzner 54

Depth Test Precision
– therefore, depth-buffer essentially stores 1/z,

rather than z!
– this yields precision problems with integer depth

buffers:

--zzeyeeye

zzNDCNDC

--nn --ff

Week 9, Fri 31 Oct 03 © Tamara Munzner 55

Depth Test Precision
– precision of depth buffer is bad for far objects
– depth fighting: two different depths in eye space

get mapped to same depth in framebuffer
• which object “wins” depends on drawing order and

scan-conversion

– gets worse for larger ratios f:n
• rule of thumb: f:n < 1000 for 24 bit depth buffer

Week 9, Fri 31 Oct 03 © Tamara Munzner 56

Z-buffer
– hardware support in graphics cards
– poor for high-depth-complexity scenes

• need to render all polygons, even if
most are invisible

– “jaggies”: pixel staircase along edges

eyeeye

Week 9, Fri 31 Oct 03 © Tamara Munzner 57

The A-Buffer
– antialiased, area-averaged accumulation buffer

• z-buffer: one visible surface per pixel
• A-buffer: linked list of surfaces

•• data for each surface includesdata for each surface includes
•• RGB, Z, areaRGB, Z, area--coverage percentage, ...coverage percentage, ...

Week 9, Fri 31 Oct 03 © Tamara Munzner 58

The Z-Buffer Algorithm
• how much memory does the Z-buffer use?
• does the image rendered depend on the

drawing order?
• does the time to render the image depend

on the drawing order?
• how does Z-buffer load scale with visible

polygons? with framebuffer resolution?

Week 9, Fri 31 Oct 03 © Tamara Munzner 59

Z-Buffer Pros
• simple!!!
• easy to implement in hardware
• polygons can be processed in arbitrary order
• easily handles polygon interpenetration
• enables deferred shading

– rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

Week 9, Fri 31 Oct 03 © Tamara Munzner 60

Z-Buffer Cons
• lots of memory (e.g. 1280x1024x32 bits)

– with 16 bits cannot discern millimeter differences in objects
at 1 km distance

• Read-Modify-Write in inner loop requires fast memory
• hard to do analytic antialiasing

– we don’t know which polygon to map pixel back to
• shared edges are handled inconsistently

– ordering dependent
• hard to simulate translucent polygons

– we throw away color of polygons behind closest one

Week 9, Fri 31 Oct 03 © Tamara Munzner 61

Visibility

– object space algorithms
• explicitly compute visible portions of polygons
• painter’s algorithm: depth-sorting, BSP trees

– image space algorithms
• operate on pixels or scan-lines
• visibility resolved to the precision of the display
• Z-buffer

Week 9, Fri 31 Oct 03 © Tamara Munzner 62

Hidden Surface Removal
• 2 classes of methods
– image-space algorithms

• perform visibility test for very pixel independently
• limited to resolution of display
• performed late in rendering pipeline

– object-space algorithms
• determine visibility on a polygon level in camera

coordinates
• resolution independent
• early in rendering pipeline (after clipping)
• expensive

