Midterm Review

Week 7, Wed 16 Oct 2003

- midterm review
- project 1 demos, hall of fame
News

• homework 1 due now
 – one day late if in handin box 18 by 9am Thu
 – two days late if in at class beginning Fri
 – no homeworks accepted after Fri 9am!
 • solutions out then
Midterm Exam

• Monday Oct 20 9am-9:50am
 – you may use one handwritten 8.5”x11” sheet
 • OK to use both sides of page
 – no other notes, no books
 – nonprogrammable calculators OK
 – arrive on time!!
What’s Covered

• transformations
• viewing and projections
• coordinate systems of rendering pipeline
• picking
• lighting and shading
• scan conversion

• not sampling
Reading

• Angel book
 – Chap 1, 2, 3, 4, 5, 6, 8.9-8.11, 9.1-9.6
 – you can be tested on material in book but not covered in lecture
 – you can be tested on material covered in lecture but not covered in book
Old Exams Posted

• see course web page
The Rendering Pipeline

- pros and cons of pipeline approach
Transformations

\[
\text{translate}(a,b,c)
\]
\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & a & x \\
 1 & b & y \\
 1 & c & z \\
 1 & 1 & 1
\end{bmatrix}
\]

\[
\text{scale}(a,b,c)
\]
\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 a & x \\
 b & y \\
 c & z \\
 1 & 1
\end{bmatrix}
\]

\[
\text{Rotate}(x, \theta)
\]
\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & \cos \theta & -\sin \theta & x \\
 \cos \theta & 1 & -\sin \theta & y \\
 \sin \theta & \cos \theta & 1 & z \\
 1 & 1 & 1 & 1
\end{bmatrix}
\]

\[
\text{Rotate}(y, \theta)
\]
\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & \sin \theta & \cos \theta & \cos \theta & -\sin \theta & 1 \\
 -\sin \theta & \cos \theta & 0 & \sin \theta & \cos \theta & 1
\end{bmatrix}
\]

\[
\text{Rotate}(z, \theta)
\]
\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & -\sin \theta & \cos \theta & 1 \\
 \sin \theta & \cos \theta & 0 & 1
\end{bmatrix}
\]
Homogeneous Coordinates

\[
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix} = \begin{bmatrix}
 1 \\
 1 \\
 w
\end{bmatrix}
\]
Composing Transformations

\[\text{ORDER MATTERS!} \]

\[
\begin{align*}
T(1,1) & \quad \text{and} \quad R(45) T(1,1) \\
R(45) T(1,1) & \quad \text{and} \quad T(1,1) R(45)
\end{align*}
\]

\[T_a T_b = T_b T_a, \text{ but } R_a R_b \neq R_b R_a \text{ and } T_a R_b
eq R_b T_a \]
Composing Transformations

• example: rotation around arbitrary center
Composing Transformations

- example: rotation around arbitrary center
 - step 1: translate coordinate system to rotation center
Composing Transformations

• example: rotation around arbitrary center
 – step 2: perform rotation
Composing Transformations

- example: rotation around arbitrary center
 - step 3: back to original coordinate system
Composing Transformations

- rotation about a fixed point
 \[p' = TRT^{-1}p \]
- rotation around an arbitrary axis
- considering frame vs. object

OpenGL:
- D
- C
- B
- A
 draw p

\[p' = DCBAp \]
Transformation Hierarchies

• hierarchies don’t fall apart when changed
• transforms apply to graph nodes beneath
Matrix Stacks

- push and pop matrix stack
 - avoid computing inverses or incremental xforms
 - avoid numerical error
Matrix Stacks

- `glPushMatrix()`
- `glPopMatrix()`
- `glScale3f(2,2,2)`
- `D = C scale(2,2,2) trans(1,0,0)`
- `glTranslate3f(1,0,0)`
- `DrawSquare()`
- `glPushMatrix()`
- `glScale3f(2,2,2)`
- `glTranslate3f(1,0,0)`
- `DrawSquare()`
- `glPopMatrix()`
Transformation Hierarchies

- example

\[
\begin{align*}
\theta_1 & \quad \theta_2 \\
\theta_3 & \quad \theta_4 \\
\theta_5 & \quad \theta_6
\end{align*}
\]

```cpp
glTranslate3f(x,y,0);
glRotatef(\theta_1,0,0,1);
DrawBody();
glPushMatrix();
glTranslate3f(0,7,0);
DrawHead();
glPopMatrix();
```
Display Lists

• reuse block of OpenGL code
• more efficient than immediate mode
 – code reuse, driver optimization
• good for static objects redrawn often
 – can’t change contents
 – not just for multiple instances
 • interactive graphics: objects redrawn every frame
• nest when possible for efficiency
Double Buffering

• two buffers, front and back
 – while front is on display, draw into back
 – when drawing finished, swap the two

• avoid flicker
Projective Rendering Pipeline

OCS - object coordinate system
WCS - world coordinate system
VCS - viewing coordinate system
CCS - clipping coordinate system
NDCS - normalized device coordinate system
DCS - device coordinate system

modeling transformation

viewing transformation

projection transformation

viewport transformation

glVertex3f(x,y,z)

glTranslatef(x,y,z)

glRotatef(th,x,y,z)

gluLookAt(...)

glFrustum(...)

glutInitWindowSize(w,h)

glViewport(x,y,a,b)

alter w

/ w

perspective division

OCS - object coordinate system
WCS - world coordinate system
VCS - viewing coordinate system
CCS - clipping coordinate system
NDCS - normalized device coordinate system
DCS - device coordinate system
Projection

- theoretical pinhole camera

- image inverted, more convenient equivalent
Projection Taxonomy

planar projections

perspective: 1,2,3-point

parallel

oblique

cabinet

cavalier

orthographic

top, front, side

axonometric:

isometric
dimetric
trimetric
Projective Transformations

• transformation of space
 – center of projection moves to infinity
 – viewing frustum transformed into a parallelepiped
Normalized Device Coordinates

left/right \(x = +/- 1 \), top/bottom \(y = +/- 1 \), near/far \(z = +/- 1 \)

Camera coordinates

NDC

Frustum
Projection Normalization

• distort such that orthographic projection of distorted objects is desired persp projection
Transforming View Volumes

Perspective view volume

Orthographic view volume

NDCS

(-1,-1,-1)

(1,1,1)
Basic Perspective Projection

\[\frac{y'}{d} = \frac{y}{z} \rightarrow y' = \frac{y \cdot d}{z} \]
also \[x' = \frac{x \cdot d}{z} \]
but \[z' = d \]

- nonuniform foreshortening
 - not affine
Basic Perspective Projection

- can express as homogenous 4x4 matrix!

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 z/d \\
\end{bmatrix}
=
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 1/d & 0 \\
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 z/d \\
\end{bmatrix}
\xrightarrow{\cdot w}
\begin{bmatrix}
 x \cdot d/z \\
 y \cdot d/z \\
 d \\
\end{bmatrix}
\]
Projective Transformations

• determining the matrix representation
 – need to observe 5 points in general position, e.g.
 • $[\text{left},0,0,1]^T \rightarrow [-1,0,0,1]^T$
 • $[0,\text{top},0,1]^T \rightarrow [0,1,0,1]^T$
 • $[0,0,-f,1]^T \rightarrow [0,0,1,1]^T$
 • $[0,0,-n,1]^T \rightarrow [0,0,-1,1]^T$
 • $[\text{left}*f/n,\text{top}*f/n,-f,1]^T \rightarrow [-1,1,1,1]^T$
 – solve resulting equation system to obtain matrix
OpenGL Orthographic Matrix

- scale, translate, reflect for new coord sys
 – understand derivation!

\[
\begin{bmatrix}
\frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\
0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\
0 & 0 & -\frac{2}{far - near} & -\frac{far + near}{far - near} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
OpenGL Perspective Matrix

- shear, scale, reflect for new coord sys
 - understand derivation!

\[
\begin{bmatrix}
\frac{2 \cdot \text{near}}{\text{right} - \text{left}} & 0 & \frac{\text{right} + \text{left}}{\text{right} - \text{left}} & 0 \\
0 & \frac{2 \cdot \text{near}}{\text{top} - \text{bot}} & \frac{\text{top} + \text{bot}}{\text{top} - \text{bot}} & 0 \\
0 & 0 & \frac{-(\text{far} + \text{near})}{\text{far} - \text{near}} & \frac{-2 \cdot \text{far} \cdot \text{near}}{\text{far} - \text{near}} \\
0 & 0 & -1 & 0
\end{bmatrix}
\]
Viewport Transformation

onscreen pixels: map from $[-1,1]$ to $[0, \text{displaywidth}]$

$$x_{DCS} = w \frac{(x_{NDCS} + 1)}{2}$$

$$y_{DCS} = h \frac{(y_{NDCS} + 1)}{2}$$

$$z_{DCS} = \frac{(z_{NDCS} + 1)}{2}$$
3 Simple Picking Approaches

• manual ray intersection

• bounding extents

• backbuffer coloring
Picking Select/Hit

• assign (hierarchical) integer key/name(s)
• small region around cursor as new viewport

• redraw in selection mode
 – equivalent to casting pick “tube”
 – store keys, depth for drawn objects in hit list

• examine hit list
 – usually use frontmost, but up to application
Light Sources

- directional/parallel lights
 - point at infinity: \((x, y, z, 0)^T\)

- point lights
 - finite position: \((x, y, z, 1)^T\)

- spotlights
 - position, direction, angle

- ambient lights
Illumination as Radiative Transfer

– model light transport as packet flow
 • particles not waves
Reflectance

- *specular*: perfect mirror with no scattering
- *gloss*: mixed, partial specularity
- *diffuse*: all directions with equal energy

\[
\text{specular} + \text{glossy} + \text{diffuse} = \text{reflectance distribution}
\]
Reflection Equations

\[I_{\text{diffuse}} = k_d I_{\text{light}} (n \cdot l) \]

\[I_{\text{specular}} = k_s I_{\text{light}} (v \cdot r)^n_{\text{shiny}} \]

\[2 (N (N \cdot L)) - L = R \]
Reflection Equations

- Blinn improvement

\[I_{\text{out}}(x) = k_s \cdot (h \cdot n)^{n_{\text{shiny}}} \cdot I_{\text{in}}(x); \]

\[h = (l + v) / 2 \]

- full Phong lighting model
 - combine ambient, diffuse, specular components

\[I_{\text{total}} = k_a \cdot I_{\text{ambient}} + \sum_{i=1}^{\text{#lights}} I_i \left(k_d \left(n \times l_i \right) + k_s \left(v \times r_i \right)^{n_{\text{shiny}}} \right) \]
Lighting vs. Shading

• lighting
 – simulating the interaction of light with surface

• shading
 – deciding pixel color
 – continuum of realism: when do we do lighting calculation?
Shading Models

• flat shading
 – compute Phong lighting once for entire polygon

• Gouraud shading
 – compute Phong lighting at the vertices and interpolate lighting values across polygon

• Phong shading
 – compute averaged vertex normals
 – interpolate normals across polygon and perform Phong lighting across polygon
Shutterbug: Flat Shading
Shutterbug: Gouraud Shading
Shutterbug: Phong Shading
Scanline Algorithms

• given vertices, fill in the pixels

triangles
- split into two regions
- fill in between edges

arbitrary polygons
- build edge table
- for each scanline
 - obtain list of intersections, i.e., AEL
 - use parity test to determine in/out and fill in the pixels
Edge Equations

• define triangle as intersection of three positive half-spaces:
Edge Equations

• So…simply turn on those pixels for which all edge equations evaluate to > 0:
Parity for General Case

- use parity for interior test
 - draw pixel if edgecount odd
 - horizontal lines: count
 - vertical max: count
 - vertical min: don’t count
Edge Tables

- **edge table (ET)**
 - store edges sorted by y in linked list
 - at ymin, store ymax, xmin, slope
- **active edge table (AET)**
 - active: currently used for computation
 - store active edges sorted by x
 - update each scanline, store ET values + current_x
 - for each scanline (from bottom to top)
 - do EAT bookkeeping
 - traverse EAT (from leftmost x to rightmost x)
 - draw pixels if parity odd
Barycentric Coordinates

• weighted combination of vertices
 – understand derivation!

\[
P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3
\]

\[
\alpha + \beta + \gamma = 1
\]

\[
0 \leq \alpha, \beta, \gamma \leq 1
\]

“convex combination of points”
Transforming Normals

• apply nonuniform scale: stretch along x by 2
 – can’t transform normal by modelling matrix

• solution:

\[
P \rightarrow P' = MP
\]
\[
N \rightarrow N' = QN
\]

\[
Q = (M^{-1})^T
\]

normal to any surface transformed by inverse transpose of modelling transformation