
11

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 1

Scan Conversion
Week 6, Wed 8 Oct 2003

• recap: polygon scan conversion
• interpolation
• barycentric coords
• transforming normals
• sampling

Week 6, Wed 8 Oct 03 © Tamara Munzner 2

News
• Homework 1

– problem 18
• x and y transposed in bottom layer

– problem 4
• rotate 30 deg around x axis with fixed point of

(3,5,12,1)

– new correct PDF posted
– reminder: no late work after Fri 17 Oct 9am

• handin box 18 CICSR basement

• Project 1
– solution, hall of fame on Friday

Week 6, Wed 8 Oct 03 © Tamara Munzner 3

News
• Office hours reminder: FSC 2618

– Mondays 10:30-11:30 or by appointment
– exceptions: Oct 20, Nov 10

• Readings
– Chap 8.9-8.11, Fri 10/3 slide notes

Week 6, Wed 8 Oct 03 © Tamara Munzner 4

Simple Polygon Scanconversion
• flood fill: simple, slow
– start with seed point
– recursively set all neighbors until boundary is hit

Week 6, Wed 8 Oct 03 © Tamara Munzner 5

Scanline Algorithms
• given vertices, fill in the pixels

arbitrary polygonsarbitrary polygons
(non(non--simple, nonsimple, non--convex)convex)

• build edge table
• for each scanline

• obtain list of intersections, i.e., AEL
• use parity test to determine in/out

and fill in the pixels

trianglestriangles

• split into two regions
• fill in between edges

Week 6, Wed 8 Oct 03 © Tamara Munzner 6

Edge Equations
• define triangle as intersection of three

positive half-spaces:

A1x + B1y + C1 < 0

A
2 x + B

2 y + C
2 < 0

A 3
x

+
B 3

y
+

C 3
<

0

A1x + B1y + C1 > 0

A 3
x

+
B 3

y
+

C 3
>

0 A
2 x + B

2 y + C
2 > 0

22

Week 6, Wed 8 Oct 03 © Tamara Munzner 7

Edge Equations
• So…simply turn on those pixels for which

all edge equations evaluate to > 0:

+++
-

-
-

Week 6, Wed 8 Oct 03 © Tamara Munzner 8

Edge Equation Consistency
• how to get same +/- state for all equations?

– consistent counterclockwise vertex traversal
• good: [0,1], [1,2], [2,0] or [0,2], [2,1], [1,0]
• bad: [0,1], [2,1], [2,0]

• how to ensure interior is positive?
– explicit area test: if negative, flip all param signs

• if (area < 0) { A = -A; B = -B; C = -C; }

0

1

2

Week 6, Wed 8 Oct 03 © Tamara Munzner 9

Parity for General Case
• use parity for interior test

– draw pixel if edgecount odd
– horizontal lines: don’t count
– vertical max: don’t count
– vertical min: count

Week 6, Wed 8 Oct 03 © Tamara Munzner 10

Edge Tables
• edge table (ET)

– store edges sorted by y in linked list
• at ymin, store ymax, xmin, slope

• active edge table (AET)
– active: currently used for computation
– store active edges sorted by x

• update each scanline, store ET values + current_x

– for each scanline (from bottom to top)
• do EAT bookkeeping
• traverse EAT (from leftmost x to rightmost x)

– draw pixels if parity odd

Week 6, Wed 8 Oct 03 © Tamara Munzner 11

Edge Table Bookkeeping
• setup: sorting in y

– bucket sort, one bucket per pixel
– add: simple check of ET[current_y]
– delete edges if edge.ymax > current_y

• main loop: sorting in x
– for polygons that do not self-intersect, order of

edges does not change between two scanlines
– so insertion sort while adding new edges suffices

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 12

Interpolation

33

Week 6, Wed 8 Oct 03 © Tamara Munzner 13

Scan Conversion
• done:
– how to determine pixels covered by a primitive

• next:
– how to assign pixel colors

• interpolation of colors across triangles
• interpolation of other properties

Week 6, Wed 8 Oct 03 © Tamara Munzner 14

Interpolation During Scanconvert
– interpolate values between vertices

• z values
• r,g,b colour components
• u,v texture coordinates
• surface normals

– three equivalent methods (for triangles)
1. bilinear interpolation
2. plane equation
3. barycentric coordinates

zyx NNN ,,

Week 6, Wed 8 Oct 03 © Tamara Munzner 15

1. Bilinear Interpolation
– interpolate quantity along left-hand and right-

hand edges, as a function of y
• then interpolate quantity as a function of x

– only triangles guarantee orientation-
independent interpolation

– compute efficiently by using known values
at previous scanline, previous pixel

Week 6, Wed 8 Oct 03 © Tamara Munzner 16

2. Plane Equation
• implicit plane equation
– z = f(x,y)

• parametric plane equation
– a(x-x0)+ b(y-y0)+c(z-z0) = 0

• explicit plane equation
– DzCyBxAPlane +⋅+⋅+⋅=

Week 6, Wed 8 Oct 03 © Tamara Munzner 17

3. Barycentric Coordinates
• weighted combination of vertices

321 PPPP ⋅+⋅+⋅= γβα

1P

3P

2P

P

(1,0,0)(1,0,0)

(0,1,0)(0,1,0)

(0,0,1)(0,0,1) 5.0=β

1=β

0=β
1,,0

1
≤≤

=++
γβα

γβα

““convex combinationconvex combination
of points”of points”

Week 6, Wed 8 Oct 03 © Tamara Munzner 18

Barycentric Coordinates
• how to compute ?
– use bilinear interpolation or plane equations

– once computed, use to interpolate any # of
parameters from their vertex values

γβα ,,

interpolate interpolate
just like we did for zjust like we did for z

γβα ,,

...=
+⋅+⋅+⋅=

β
α dzcybxa

321 zzzz ⋅+⋅+⋅= γβα
321 rrrr ⋅+⋅+⋅= γβα

321 gggg ⋅+⋅+⋅= γβα
etc.etc.

44

Week 6, Wed 8 Oct 03 © Tamara Munzner 19

Interpolatation: Gouraud Shading
• need linear function over triangle that
yields original vertex colors at vertices
• use barycentric coordinates for this
– every pixel in interior gets colors resulting from

mixing colors of vertices with weights
corresponding to barycentric coordinates

– color at pixels is affine combination of colors at
vertices

)()()(

:)(

321

321

xxx
xxx

ColorColorColor

Color

⋅γ+⋅β+⋅α
=⋅γ+⋅β+⋅α

)()()(

:)(

321

321

xxx
xxx

ColorColorColor

Color

⋅γ+⋅β+⋅α
=⋅γ+⋅β+⋅α

Week 6, Wed 8 Oct 03 © Tamara Munzner 20

• we know
– affine combinatons are invariant under affine

transformations

• thus
– does not matter whether colors are interpolated

before or after affine transformations!
– colors do not shift around on the surface with

affine transformations, but stay attached to
every surface point

Interpolatation: Gouraud Shading

Week 6, Wed 8 Oct 03 © Tamara Munzner 21

Computing Barycentric Coords
• how do we find barycentric coordinates for
every pixel efficiently?
– look at a point x on a scanline:

xx11

xx22

xx33

xx44 xx55xxaa
22

: a
: a

11

1
4 1 2 1

1 2

()
a

a a
= + −

+
x x x x

2
21

1
1

21

2

2
21

1
1

21

1)1(

xx

xx

⋅
+

+⋅
+

=

⋅
+

+⋅
+

−=

aa
a

aa
a

aa
a

aa
a

Week 6, Wed 8 Oct 03 © Tamara Munzner 22

Computing Barycentric Coords
• similarly:

xx11

xx22

xx33

xx44 xx55aa
22

: a
: a

11

3
21

1
1

21

2
5 xxx ⋅

+
+⋅

+
=

bb
b

bb
b

5
21

1
4

21

2 xxx ⋅
+

+⋅
+

=
cc

c
cc

c

bb 11
:

 b
:

 b
22

cc11:c:c22

Week 6, Wed 8 Oct 03 © Tamara Munzner 23

Computing Barycentric Coords
combining

gives

3
21

1
1

21

2
5 xxx ⋅

+
+⋅

+
=

bb
b

bb
b

5
21

1
4

21

2 xxx ⋅
+

+⋅
+

=
cc

c
cc

c 2 1
4 1 2

1 2 1 2

a a
a a a a

= ⋅ + ⋅
+ +

x x x

2 2 1 1 2 1
1 2 1 3

1 2 1 2 1 2 1 2 1 2 1 2

c a a c b b
c c a a a a c c b b b b

� � � �
= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅� � � �+ + + + + +� � � �

x x x x x

Week 6, Wed 8 Oct 03 © Tamara Munzner 24

Computing Barycentric Coords

thus

321 xxxx ⋅γ+⋅β+⋅α=

21

1

21

1

21

1

21

2

21

2

21

1

21

2

21

2 ,with

bb
b

cc
c

aa
a

cc
c

bb
b

cc
c

aa
a

cc
c

+
⋅

+
=γ

+
⋅

+
=β

+
⋅

+
+

+
⋅

+
=α

55

Week 6, Wed 8 Oct 03 © Tamara Munzner 25

Computing Barycentric Coords
• can prove correct by verifying barycentric
properties
– α + β + γ = 1
– 0 ≤ α, β, γ ≤ 1

Week 6, Wed 8 Oct 03 © Tamara Munzner 26

Gouraud Shading with Bary Coords
• algorithm
– modify scanline algorithm for polygon scan-

conversion as follows:
• linearly interpolate colors along edges of triangle to

obtain colors for endpoints of span of pixels
• linearly interpolate colors from these endpoints within

the scanline

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 27

Transforming Normals

Week 6, Wed 8 Oct 03 © Tamara Munzner 28

Interpolation During Scanconvert
– interpolate values between vertices

• z values
• r,g,b colour components
• u,v texture coordinates
• surface normals

zyx NNN ,,

Week 6, Wed 8 Oct 03 © Tamara Munzner 29

Computing Normals

– polygon:

– assume vertices ordered CCW when viewed
from visible side of polygon

– normal for a vertex
• used for lighting
• supplied by model (i.e., sphere),

or computed from neighboring polygons

1P

N

2P

3P
)()(1312 PPPPN −×−=

N

Week 6, Wed 8 Oct 03 © Tamara Munzner 30

Transforming Normals
• what is a normal?

– a direction
– earlier: vector as direction

– so if points transformed by modelview vector
M, can we just transform vector by M too?

0

x
y

z

� �
	

	

	

	

� �

11 12 13

21 22 23

31 32 33

'
'
'

0 00 0 0 1

x

y

z

Nx Nxm m m T
Ny Nym m m T
Nz Nzm m m T

� �� � � �
	
	
 	

	
	
 	
=
	
	
 	

	
	
 	

	
� � � �� �

66

Week 6, Wed 8 Oct 03 © Tamara Munzner 31

Transforming Normals

• translations OK: w=0 means unaffected
• rotations OK
• uniform scaling OK

• these all maintain direction

�

�

	
	
	
	

�

�

�

�

	
	
	
	
	

�

�

=

�

�

	
	
	
	

�

�

010000
'
'
'

333231

232221

131211

z

y

x

Tmmm
Tmmm

Tmmm

z

y

x

z

y

x

Week 6, Wed 8 Oct 03 © Tamara Munzner 32

Transforming Normals
• nonuniform scaling does not work
• x-y=0 plane

– line x=y
– normal: [1,-1,0]

• ignore normalization for now

Week 6, Wed 8 Oct 03 © Tamara Munzner 33

Transforming Normals
• apply nonuniform scale: stretch along x by 2

– new plane x = 2y

• transformed normal

– x = -2y or x+2y=0
– not perpendicular!
– should be 2x = -y

2 2 0 0 0 1
1 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

� � � � � �
	
 	
 	
− −
	
 	
 	
=
	
 	
 	

	
 	
 	

� � � � � �

Week 6, Wed 8 Oct 03 © Tamara Munzner 34

Planes and Normals

• plane is all points such that
or (must transpose for matrix mult!)

• explicit form

DzCyBxAPlane +⋅+⋅+⋅=

1

A x

B y
C z

D

� � � �
	
 	

	
 	
= =
	
 	

	
 	

� � � �

N P

0=N P�
T 0=N P

Week 6, Wed 8 Oct 03 © Tamara Munzner 35

Finding Correct Normal Transform
• transform a plane

MPP ='P
N QNN ='

0=PN T

0'' =PN T

0)()(=MPQN T

0=MPQN TT

IMQT =

()TMQ 1−=

if we know M,if we know M,
what should Q be?what should Q be?

stay perpendicularstay perpendicular

substitute from abovesubstitute from above

T T T(AB) = B A

thus the normal to any surface has to be
transformed by the inverse transpose of the

modelling transformation

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 36

Sampling and Antialiasing

77

Week 6, Wed 8 Oct 03 © Tamara Munzner 37

Jaggy Lines
• rasterized lines were not smooth

• “stair-stepping”, “jaggies”

Week 6, Wed 8 Oct 03 © Tamara Munzner 38

Smoother Lines
• solution
– set 2 points with intensity proportional to

distance from line

Week 6, Wed 8 Oct 03 © Tamara Munzner 39

Smoothing Bresenham
• can modify Bresenham alg to do this
– for every column of pixels, set the two pixels

between which the line intersects the column
– means that decision variable has to be shifted

down one pixel
– increments for E and NE can be determined as

before (but results slightly different)
– d can directly be used to multiply pixel intensities

• fully integer implementation possible

)1,1(++= yxFd

Week 6, Wed 8 Oct 03 © Tamara Munzner 40

General Problem
• “jaggies”: undesirable artifact

– name for general problem is “aliasing”

• solving the general problem
– “antialiasing”

• theoretical framework
– sampling, signal processing

Week 6, Wed 8 Oct 03 © Tamara Munzner 41

Samples
• most things in the real world are continuous
• everything in a computer is discrete
• the process of mapping a continuous function to a

discrete one is called sampling
• the process of mapping a discrete function to a

continuous one is called reconstruction
• the process of mapping a continuous variable to a

discrete one is called quantization
• rendering an image requires sampling and

quantization
• displaying an image involves reconstruction

Week 6, Wed 8 Oct 03 © Tamara Munzner 42

What is a pixel?

• a pixel is not…
– a box
– a disk
– a teeny tiny little light

• a pixel is a point
– it has no dimension
– it occupies no area
– it cannot be seen
– it can have a coordinate

a pixel is more than a point, it is a sample

88

Week 6, Wed 8 Oct 03 © Tamara Munzner 43

Pixels
• point samples
– pixels have no extent!

Week 6, Wed 8 Oct 03 © Tamara Munzner 44

Pixel Display
• reconstruction yields continuous function
– displays constructed to create reconstruction
– footprints can overlap! (e.g. Gaussians)

Week 6, Wed 8 Oct 03 © Tamara Munzner 45

Pixels
• square pixel model
– Just ONE possible reconstruction function
– and a really bad one – leads to poor quality

Week 6, Wed 8 Oct 03 © Tamara Munzner 46

Samples

Week 6, Wed 8 Oct 03 © Tamara Munzner 47

Samples

Week 6, Wed 8 Oct 03 © Tamara Munzner 48

Line Segments
• we tried to sample a line segment so it

would map to a 2D raster display
• we quantized the pixel values to 0 or 1
• we saw stair steps, or jaggies

99

Week 6, Wed 8 Oct 03 © Tamara Munzner 49

Line Segments
• instead, quantize to many shades
• but what sampling algorithm is used?

Week 6, Wed 8 Oct 03 © Tamara Munzner 50

Area Sampling
• shade pixels according to the area covered by

thickened line
• this is unweighted area sampling

• a rough approximation formulated by dividing each
pixel into a finer grid of pixels

Week 6, Wed 8 Oct 03 © Tamara Munzner 51

Unweighted Area Sampling
• primitive cannot affect intensity of pixel if it

does not intersect the pixel
• equal areas cause equal intensity,

regardless of distance from pixel center to
area

Week 6, Wed 8 Oct 03 © Tamara Munzner 52

Weighted Area Sampling
• unweighted sampling colors two pixels

identically when the primitive cuts the
same area through the two pixels

• intuitively, pixel cut through the center
should be more heavily weighted than one
cut along corner

Week 6, Wed 8 Oct 03 © Tamara Munzner 53

Weighted Area Sampling

• weighting function, W(x,y)
– specifies the contribution of primitive

passing through the point (x, y) from pixel
center

x

Intensity
W(x,y)

Week 6, Wed 8 Oct 03 © Tamara Munzner 54

Images
• an image is a 2D function �(x, y) that

specifies intensity for each point (x, y)

1010

Week 6, Wed 8 Oct 03 © Tamara Munzner 55

Sampling and Image
• our goal is to convert the continuous

image to a discrete set of samples
• the graphics system’s display hardware

will attempt to reconvert the samples into a
continuous image: reconstruction

Week 6, Wed 8 Oct 03 © Tamara Munzner 56

Point Sampling an Image
• simplest sampling is on a grid
• sample depends

solely on value
at grid points

Week 6, Wed 8 Oct 03 © Tamara Munzner 57

Point Sampling
• multiply sample grid by image intensity to

obtain a discrete set of points, or samples.

Sampling Geometry

Week 6, Wed 8 Oct 03 © Tamara Munzner 58

• some objects missed entirely, others
poorly sampled

Sampling Errors

Week 6, Wed 8 Oct 03 © Tamara Munzner 59

Fixing Sampling Errors

• supersampling
– take more than one sample for each pixel and

combine them
• how many

samples is
enough?

• how do we
know no
features are
lost?

����������������

	���	�����������

���
�����������

����������������

