IBL
=] University of British Columbia

o
CPSC 414 Computer Graphics

Scan Conversion
Week 6, Wed 8 Oct 2003
* recap: polygon scan conversion
« interpolation
* barycentric coords
« transforming normals
» sampling

© Tamara Munzner

News
* Homework 1
—problem 18
« x and y transposed in bottom layer
— problem 4

« rotate 30 deg around x axis with fixed point of
(3,5,12,1)

—new correct PDF posted
—reminder: no late work after Fri 17 Oct 9am
« handin box 18 CICSR basement

* Project 1
—solution, hall of fame on Friday
Week 6, Wed 8 Oct 03 © Tamara Munzner

News

« Office hours reminder: FSC 2618
—Mondays 10:30-11:30 or by appointment
—exceptions: Oct 20, Nov 10

» Readings
—Chap 8.9-8.11, Fri 10/3 slide notes

Week 6, Wed 8 Oct 03 © Tamara Munzner

Simple Polygon Scanconversion

« flood fill: simple, slow
— start with seed point
— recursively set all neighbors until boundary is hit

Week 6, Wed 8 Oct 03 © Tamara Munzner

Scanline Algorithms

« given vertices, fill in the pixels

triangles arbitrary polygons

o . (non-simple, non-convex)
« split into two regions
« fill in between edges « build edge table

« for each scanline
« obtain list of intersections, i.e., AEL
« use parity test to determine in/out
and fill in the pixels

Week 6, Wed 8 Oct 03 © Tamara Munzner

Edge Equations

« define triangle as intersection of three
positive half-spaces:

Week 6, Wed 8 Oct 03 © Tamara Munzner

Edge Equations

* So...simply turn on those pixels for which
all edge equations evaluate to > 0:

OOOOEO0000000000OOOOOOOOCCCCCOCCC 00000000
¢ XLXIXY XXX)
¢ XXYX XXX)}
¢ XXX XXX)}
¢ DO, 2
¢ ! 3
¢ %)}
¢)
¢ X)
¢)
¢)}
¢)}
¢)}
¢)}
¢ o0 3

o0
:%’)
;2"" XX XXX)
¢ XNXXY XXX)}
¢)9.900'¢ XXX)}
[09000)
Week 6, Wed 8 Oct 03 © Tamara Munzner 7

Edge Equation Consistency

+ how to get same +/- state for all equations?

— consistent counterclockwise vertex traversal
« good: [0,1], [1,2], [2,0] or [0,2], [2,1], [1,0] 1

« bad: [0,1], [2,1], [2,0]
0
2

+ how to ensure interior is positive?

— explicit area test: if negative, flip all param signs
« if(area<0){A=-A;B=-B;C=-C;}

Week 6, Wed 8 Oct 03 © Tamara Munzner 8

Parity for General Case

* use parity for interior test
—draw pixel if edgecount odd
—horizontal lines: don’t count
—vertical max: don’t count
— vertical min: count

Week 6, Wed 8 Oct 03 © Tamara Munzner 9

Edge Table Bookkeeping

* setup: sorting iny
—bucket sort, one bucket per pixel
—add: simple check of ET[current_y]
—delete edges if edge.ymax > current_y
* main loop: sorting in x
—for polygons that do not self-intersect, order of
edges does not change between two scanlines
—so insertion sort while adding new edges suffices

Week 6, Wed 8 Oct 03 © Tamara Munzner 11

Edge Tables
* edge table (ET)
— store edges sorted by y in linked list
« at ymin, store ymax, xmin, slope
+ active edge table (AET)
—active: currently used for computation
— store active edges sorted by x
« update each scanline, store ET values + current_x
—for each scanline (from bottom to top)

« do EAT bookkeeping

« traverse EAT (from leftmost x to rightmost x)
— draw pixels if parity odd
Week 6, Wed 8 Oct 03 © Tamara Munzner 10

& University of British Columbia

CPSC 414 Computer Graphics

Interpolation

© Tamara Munzner 12

Scan Conversion

* done:
— how to determine pixels covered by a primitive
* next:

— how to assign pixel colors
« interpolation of colors across triangles
« interpolation of other properties

Week 6, Wed 8 Oct 03 © Tamara Munzner

Interpolation During Scanconvert

— interpolate values between vertices
« zvalues
* r,9,b colour components
* uyv texture coordinates
. surface normals
NN N,

— three equivalent methods (for triangles)
1. bilinear interpolation
2. plane equation
3. barycentric coordinates

Week 6, Wed 8 Oct 03 © Tamara Munzner 14

1. Bilinear Interpolation

— interpolate quantity along left-hand and right-
hand edges, as a function of y
« then interpolate quantity as a function of x

— only triangles guarantee orientation-
independent interpolation

— compute efficiently by using known values
at previous scanline, previous pixel

© Tamara Munzner

Week 6, Wed 8 Oct 03 —

3. Barycentric Coordinates

+ weighted combination of vertices
P=a-K+f-P + 7P

a+pfB+y=1

0<e, B,y<1 B 1,00

“convex combination
of points” (0,0,1)

p

Week 6, Wed 8 Oct 03)

© Tamara Munzner

2. Plane Equation

« implicit plane equation
- z=1(xy)

* parametric plane equation
— a(x-xp)+ b(y-yg)+c(z-zy) = 0

« explicit plane equation
— Plane=A-x+B-y+C-z+D

Week 6, Wed 8 Oct 03 © Tamara Munzner 16

Barycentric Coordinates

* how to compute ¢, 8,7 ?
— use bilinear interpolation or plane equations

Z

interpolate a,/)’,y a=a-x+b-y+c-z+d
just like we did for z ﬂ

— once computed, use to interpolate any # of
parameters from their vertex values
1=+ ety
r=a-n+B-n+yn
g=a-g+pB g, +7 g
etc.
Week 6, Wed 8 Oct 03

© Tamara Munzner 18

Interpolatation: Gouraud Shading

* need linear function over triangle that
yields original vertex colors at vertices

« use barycentric coordinates for this

— every pixel in interior gets colors resulting from
mixing colors of vertices with weights

corresponding to barycentric coordinates

— color at pixels is affine combination of colors at
vertices

Color(ot-x, +B X, +7-X,) =
o.- Color(x,) +p - Color(x,) + Y- Color(x,)

Week 6, Wed 8 Oct 03

© Tamara Munzner

Interpolatation: Gouraud Shading

* we know

— affine combinatons are invariant under affine
transformations

* thus

— does not matter whether colors are interpolated
before or after affine transformations!
— colors do not shift around on the surface with

affine transformations, but stay attached to
every surface point

Week 6, Wed 8 Oct 03 © Tamara Munzner

Computing Barycentric Coords

» how do we find barycentric coordinates for
every pixel efficiently?

— look at a point x on a scanline:

X3

a
X, =X, +—— (X, —-X,)
a,+a,

20

Xy
Week 6, Wed 8 Oct 03

a +a,

a,

=(1-—4yx 44 x

a,+a,

a

a +a,

X, +

a +a,

X

2

© Tamara Munzner

Computing Barycentric Coords

combining
[(o _ a4 a,
x=—2 .x, A \
[c tc,

gives

&) 4 4 G b, b,
X= - X, + X, |+ - X, + -X,
¢ +c, \a+a, a, +a, ¢ +c, \(b+b, b, +b,

Week 6, Wed 8 Oct 03 © Tamara Munzner

Computing Barycentric Coords

* similarly:

b, b,
Xs = -X, ‘X,
b +b, b +b,
c ¢
X=—2— X, +—— X,

4
C1+C2 C1+C2

Xy
Week 6, Wed 8 Oct 03

© Tamara Munzner 22

Computing Barycentric Coords
thus

X=0-X,+0-x,+7X,

. c a c b
withoo=—2— —2 1 .2 |
¢ +e, a+a, c+c, b+b,
-9 4
¢ +c, a+a,
o b

¢, +c, b+b,

Week 6, Wed 8 Oct 03

© Tamara Munzner

24

Computing Barycentric Coords

« can prove correct by verifying barycentric

properties
—o+B+y=1
-0<a,B,y<s1
Week 6, Wed 8 Oct 03 © Tamara Munzner 25
== University of British Columbia
o

CPSC 414 Computer Graphics

Transforming Normals

© Tamara Munzner

Gouraud Shading with Bary Coords

* algorithm
— modify scanline algorithm for polygon scan-
conversion as follows:
« linearly interpolate colors along edges of triangle to
obtain colors for endpoints of span of pixels
« linearly interpolate colors from these endpoints within
the scanline

Week 6, Wed 8 Oct 03 © Tamara Munzner 26

Interpolation During Scanconvert

— interpolate values between vertices
« zvalues
* r,9,b colour components
* uyv texture coordinates
* N,N_.N, surface normals

27

Computing Normals

—polygon: ., LB
A N=(P,=R)x(P~P)
A P,

— assume vertices ordered CCW when viewed
from visible side of polygon
— normal for a vertex
« used for lighting

« supplied by model (i.e., sphere),
or computed from neighboring polygons

N

Week 6, Wed 8 Oct 03 © Tamara Munzner

Week 6, Wed 8 Oct 03 © Tamara Munzner

28

Transforming Normals

. X
+ what is a normal? y
—adirection Z
—earlier: vector as direction 0
—so if points transformed by modelview vector
M, can we just transform vector by M too?
Nx' my, my, my T, | Nx
Ny my my my T, || Ny

y

z my my omy T, z

0 o 0 o0 1]0

Week 6, Wed 8 Oct 03 © Tamara Munzner

30

Transforming Normals

X KCTRLE LT

T || x

Y _|my my omy T Y
B T,
1

0 0 02 0“
- translations OK: w=0 means unaffected
« rotations OK
+ uniform scaling OK

« these all maintain direction

Week 6, Wed 8 Oct 03 © Tamara Munzner

Transforming Normals

+ apply nonuniform scale: stretch along x by 2
—new plane x = 2y
« transformed normal

Transforming Normals

+ nonuniform scaling does not work
 x-y=0 plane
—line x=y
—normal: [1,-1,0]
« ignore normalization for now

Week 6, Wed 8 Oct 03 © Tamara Munzner 32

2772 0 0 o1
-1{ |0 1 0 0f-1
0| oo 1 o0fo
0] [0 00 1]0
—X = -2y or x+2y=0
—not perpendicular!
—should be 2x = -y
Week 6, Wed 8 Oct 03 © Tamara Munzner 33

Planes and Normals

* plane is all points such that NeP =0

or NTP =0 (must transpose for matrix mult!)

A X
B

N: P:
C z
D 1

* explicit form
Plane=A-x+B-y+C-z+D

Week 6, Wed 8 Oct 03 © Tamara Munzner 34

Finding Correct Normal Transform
« transform a plane

'—
P P - MP if we know M,
N N' - QN what should Q be?
N'T P'=0 stay perpendicular
(QN)T (MP) =0 substitute from above
T’ — AB)" =B"A"
N O MP=0 (
T
O'M =1 N'P=0
W\ thus the normal to any surface has to be
= - transformed by the inverse transpose of the
0=(Mm") y

modelling transformation

Week 6, Wed 8 Oct 03 © Tamara Munzner

[UBC]
== University of British Columbia

R

CPSC 414 Computer Graphics

Sampling and Antialiasing

© Tamara Munzner 36

Jaggy Lines

« rasterized lines were not smooth

o

« “stair-stepping”, “jaggies”

Week 6, Wed 8 Oct 03 © Tamara Munzner 37

Smoother Lines

« solution

— set 2 points with intensity proportional to
distance from line

Week 6, Wed 8 Oct 03 © Tamara Munzner 38

Smoothing Bresenham

« can modify Bresenham alg to do this

— for every column of pixels, set the two pixels
between which the line intersects the column

— means that decision variable has to be shifted
down one pixel d=F(x+1,y+1)

— increments for E and NE can be determined as
before (but results slightly different)

— d can directly be used to multiply pixel intensities
« fully integer implementation possible

Week 6, Wed 8 Oct 03 © Tamara Munzner 39

Samples

most things in the real world are continuous

everything in a computer is discrete

+ the process of mapping a continuous function to a
discrete one is called sampling

+ the process of mapping a discrete function to a
continuous one is called reconstruction

« the process of mapping a continuous variable to a
discrete one is called quantization

+ rendering an image requires sampling and

quantization

displaying an image involves reconstruction

Week 6, Wed 8 Oct 03 © Tamara Munzner 41

General Problem

* “jaggies”: undesirable artifact
—name for general problem is “aliasing”
+ solving the general problem
— “antialiasing”
« theoretical framework
—sampling, signal processing

Week 6, Wed 8 Oct 03 © Tamara Munzner 40

What is a pixel?

« apixel is not...
— abox
—adisk
— ateeny tiny little light
« apixel is a point
— it has no dimension
— it occupies no area
— it cannot be seen
— it can have a coordinate

~ nota
box!

)
4

4

o

not a

circle!

a pixel is more than a point, it is a sample

Week 6, Wed 8 Oct 03 © Tamara Munzner 42

Pixels

* point samples
— pixels have no extent!

Week 6, Wed 8 Oct 03 © Tamara Munzner 43

Pixel Display

« reconstruction yields continuous function
— displays constructed to create reconstruction
— footprints can overlap! (e.g. Gaussians)

Week 6, Wed 8 Oct_03 © Tamara Munzner 44

Pixels

* square pixel model

— Just ONE possible reconstruction function

— and areally bad one — leads to poor quality
|

|

Week 6, Wed 8 Oct_03 © Tamara Munzner 45

Anfi-Aliasing: Example

— Y liased line
S -l sed line

VY TOR U, VY OU U L Uu v 1 aniaia wiunizist -5

Samples

Week 6, Wed 8 Oct_03 © Tamara Munzner 47

Line Segments

+ we tried to sample a line segment so it
would map to a 2D raster display

» we quantized the pixel values to 0 or 1
+ we saw stair steps, or jaggies

Week 6, Wed 8 Oct_03 © Tamara Munzner 48

Line Segments

* instead, quantize to many shades
« but what sampling algorithm is used?

Week 6, Wed 8 Oct 03 © Tamara Munzner

49

Area Sampling

+ shade pixels according to the area covered by
thickened line

« this is unweighted area sampling
[
P

mi—

+ arough approximation formulated by dividing each
pixel into a finer grid of pixels

Week 6, Wed 8 Oct 03 © Tamara Munzner 50

Unweighted Area Sampling

+ primitive cannot affect intensity of pixel if it
does not intersect the pixel

» equal areas cause equal intensity,
regardless of distance from pixel center to
area

Week 6, Wed 8 Oct 03 © Tamara Munzner

Weighted Area Sampling

+ unweighted sampling colors two pixels
identically when the primitive cuts the
same area through the two pixels

« intuitively, pixel cut through the center
should be more heavily weighted than one
cut along corner

Week 6, Wed 8 Oct 03 © Tamara Munzner 52

Weighted Area Sampling

+ weighting function, W(x,y)
— specifies the contribution of primitive
passing through the point (x, y) from pixel
center

Intensity

W(xy)

AN

X

Week 6, Wed 8 Oct 03 © Tamara Munzner

Images

+ animage is a 2D function I(x, y) that
specifies intensity for each point (x, y)

An image seen as a continuous 2D function

Week 6, Wed 8 Oct 03 © Tamara Munzner 54

Sampling and Image

« our goal is to convert the continuous
image to a discrete set of samples

« the graphics system’s display hardware
will attempt to reconvert the samples into a
continuous image: reconstruction

Week 6, Wed 8 Oct 03 © Tamara Munzner 55

Point Sampling an Image

* simplest sampling is on a grid
» sample depends
solely on value

at grid points

Week 6, Wed 8 Oct 03 © Tamara Munzner 56

Point Sampling

» multiply sample grid by image intensity to
obtain a discrete set of points, or samples.

Week 6, Wed 8 Oct 03 © Tamara Munzner 57

Fixing Sampling Errors

* supersampling
—take more than one sample for each pixel and
combine them

* how many 150x15 to 100x10

samples is
200x20 to 100x10
enough?

+ how do we 300x30 to 100x10
know no
features are ——w
lost?

Week 6, Wed 8 Oct 03 © Tamara Munzner 59

Sampling Errors

» some objects missed entirely, others
poorly sampled

Week 6, Wed 8 Oct 03 © Tamara Munzner 58

10

