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Scan Conversion
Week 6, Wed 8 Oct 2003

• recap: polygon scan conversion
• interpolation
• barycentric coords
• transforming normals 
• sampling
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News
• Homework 1 

– problem 18
• x and y transposed in bottom layer

– problem 4
• rotate 30 deg around x axis with fixed point of 

(3,5,12,1)

– new correct PDF posted 
– reminder: no late work after Fri 17 Oct 9am

• handin box 18 CICSR basement

• Project 1
– solution, hall of fame on Friday
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News
• Office hours reminder: FSC 2618

– Mondays 10:30-11:30 or by appointment
– exceptions: Oct 20, Nov 10

• Readings
– Chap 8.9-8.11, Fri 10/3 slide notes
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Simple Polygon Scanconversion
• flood fill: simple, slow
– start with seed point
– recursively set all neighbors until boundary is hit

Week 6, Wed 8 Oct  03 © Tamara Munzner 5

Scanline Algorithms
• given vertices,  fill in the pixels

arbitrary polygonsarbitrary polygons
(non(non--simple, nonsimple, non--convex)convex)

• build edge table
• for each scanline

• obtain list of intersections, i.e., AEL
• use parity test to determine in/out

and fill in the pixels

trianglestriangles

• split into two regions
• fill in between edges
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Edge Equations
• define triangle as intersection of three 

positive half-spaces:

A1x + B1y + C1 < 0
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Edge Equations
• So…simply turn on those pixels for which 

all edge equations evaluate to > 0:
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Edge Equation Consistency
• how to get same +/- state for all equations?

– consistent counterclockwise vertex traversal
• good: [0,1], [1,2], [2,0] or [0,2], [2,1], [1,0]
• bad: [0,1], [2,1], [2,0]

• how to ensure interior is positive?
– explicit area test: if negative, flip all param signs 

• if (area < 0) { A = -A; B = -B; C = -C; }

0

1

2
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Parity for General Case
• use parity for interior test 

– draw pixel if edgecount odd
– horizontal lines: don’t count
– vertical max: don’t count
– vertical min: count
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Edge Tables
• edge table (ET)

– store edges sorted by y in linked list
• at ymin, store ymax, xmin, slope

• active edge table (AET)
– active: currently used for computation
– store active edges sorted by x 

• update each scanline, store ET values + current_x

– for each scanline (from bottom to top)
• do EAT bookkeeping
• traverse EAT (from leftmost x to rightmost x)

– draw pixels if parity odd
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Edge Table Bookkeeping
• setup: sorting in y

– bucket sort, one bucket per pixel
– add: simple check of ET[current_y] 
– delete edges if edge.ymax > current_y

• main loop: sorting in x
– for polygons that do not self-intersect, order of 

edges does not change between two scanlines 
– so insertion sort while adding new edges suffices
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Interpolation
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Scan Conversion
• done:
– how to determine pixels covered by a primitive

• next: 
– how to assign pixel colors

• interpolation of colors across triangles
• interpolation of other properties
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Interpolation During Scanconvert
– interpolate values between vertices  

• z values
• r,g,b   colour components
• u,v     texture coordinates
• surface normals

– three equivalent methods (for triangles)
1. bilinear interpolation
2. plane equation
3. barycentric coordinates

zyx NNN ,,
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1. Bilinear Interpolation
– interpolate quantity along left-hand and right-

hand edges, as a function of y
• then interpolate quantity as a function of x

– only triangles guarantee orientation-
independent interpolation

– compute efficiently by using known values
at previous scanline,  previous pixel 
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2. Plane Equation
• implicit plane equation
– z = f(x,y)

• parametric plane equation
– a(x-x0)+ b(y-y0)+c(z-z0) = 0

• explicit plane equation
– DzCyBxAPlane +⋅+⋅+⋅=
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3. Barycentric Coordinates
• weighted combination of vertices

321 PPPP ⋅+⋅+⋅= γβα
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Barycentric Coordinates
• how to compute              ? 
– use bilinear interpolation or plane equations

– once computed, use to interpolate any # of 
parameters from their vertex values

γβα ,,

interpolate                  interpolate                  
just like we did for zjust like we did for z

γβα ,,

...=
+⋅+⋅+⋅=

β
α dzcybxa

321 zzzz ⋅+⋅+⋅= γβα
321 rrrr ⋅+⋅+⋅= γβα

321 gggg ⋅+⋅+⋅= γβα
etc.etc.
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Interpolatation: Gouraud Shading
• need linear function over triangle that       
yields original vertex colors at vertices
• use barycentric coordinates for this
– every pixel in interior gets colors resulting from 

mixing colors of vertices with weights 
corresponding to barycentric coordinates

– color at pixels is affine combination of colors at 
vertices
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• we know
– affine combinatons are invariant under affine

transformations

• thus
– does not matter whether colors are interpolated 

before or after affine transformations!
– colors do not shift around on the surface with 

affine transformations, but stay attached to 
every surface point

Interpolatation: Gouraud Shading
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Computing Barycentric Coords
• how do we find barycentric coordinates for 
every pixel efficiently?
– look at a point x on a scanline:
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Computing Barycentric Coords
• similarly:
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Computing Barycentric Coords
combining

gives
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Computing Barycentric Coords

thus
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Computing Barycentric Coords
• can prove correct by verifying barycentric 
properties
– α + β + γ = 1
– 0 ≤ α, β, γ ≤ 1
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Gouraud Shading with Bary Coords
• algorithm
– modify scanline algorithm for polygon scan-

conversion as follows:
• linearly interpolate colors along edges of triangle to 

obtain colors for endpoints of span of pixels
• linearly interpolate colors from these endpoints within 

the scanline
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Transforming Normals
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Interpolation During Scanconvert
– interpolate values between vertices  

• z values
• r,g,b   colour components
• u,v     texture coordinates
• surface normals

zyx NNN ,,
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Computing Normals

– polygon:

– assume vertices ordered CCW when viewed 
from visible side of polygon

– normal for a vertex
• used for lighting
• supplied by model (i.e., sphere),

or computed from neighboring polygons

1P

N

2P

3P
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Transforming Normals
• what is a normal?

– a direction
– earlier: vector as direction

– so if points transformed by modelview vector 
M, can we just transform vector by M too? 
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Transforming Normals

• translations OK: w=0 means unaffected
• rotations OK
• uniform scaling OK

• these all maintain direction
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Transforming Normals
• nonuniform scaling does not work
• x-y=0 plane 

– line x=y
– normal: [1,-1,0] 

• ignore normalization for now
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Transforming Normals
• apply nonuniform scale: stretch along x by 2

– new plane x = 2y

• transformed normal

– x = -2y or x+2y=0
– not perpendicular!
– should be 2x = -y
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Planes and Normals

• plane is all points such that                 
or                  (must transpose for matrix mult!)

• explicit form

DzCyBxAPlane +⋅+⋅+⋅=
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Finding Correct Normal Transform
• transform a plane

MPP ='P
N QNN ='

0=PN T

0'' =PN T

0)()( =MPQN T

0=MPQN TT

IMQT =

( )TMQ 1−=

if we know M,if we know M,
what should Q be?what should Q be?

stay perpendicularstay perpendicular

substitute from abovesubstitute from above

T T T(AB) = B A

thus the normal to any surface has to be 
transformed by the inverse transpose of the 

modelling transformation
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Sampling and Antialiasing
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Jaggy Lines
• rasterized lines were not smooth

• “stair-stepping”, “jaggies”
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Smoother Lines
• solution
– set 2 points with intensity proportional to 

distance from line
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Smoothing Bresenham
• can modify Bresenham alg to do this
– for every column of pixels, set the two pixels 

between which the line intersects the column
– means that decision variable has to be shifted 

down one pixel
– increments for E and NE can be determined as 

before (but results slightly different)
– d can directly be used to multiply pixel intensities

• fully integer implementation possible

)1,1( ++= yxFd
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General Problem
• “jaggies”: undesirable artifact

– name for general problem is “aliasing”

• solving the general problem
– “antialiasing”

• theoretical framework
– sampling, signal processing
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Samples
• most things in the real world are continuous
• everything in a computer is discrete
• the process of mapping a continuous function to a 

discrete one is called sampling
• the process of mapping a discrete function to a 

continuous one is called reconstruction
• the process of mapping a continuous variable to a 

discrete one is called quantization
• rendering an image requires sampling and 

quantization
• displaying an image involves reconstruction
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What is a pixel?

• a pixel is not…
– a box
– a disk
– a teeny tiny little light

• a pixel is a point
– it has no dimension
– it occupies no area
– it cannot be seen
– it can have a coordinate

a pixel is more than a point, it is a sample
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Pixels
• point samples
– pixels have no extent!
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Pixel Display
• reconstruction yields continuous function
– displays constructed to create reconstruction
– footprints can overlap! (e.g. Gaussians)
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Pixels
• square pixel model
– Just ONE possible reconstruction function
– and a really bad one – leads to poor quality
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Samples
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Samples
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Line Segments
• we tried to sample a line segment so it 

would map to a 2D raster display
• we quantized the pixel values to 0 or 1
• we saw stair steps, or jaggies



99

Week 6, Wed 8 Oct  03 © Tamara Munzner 49

Line Segments
• instead, quantize to many shades
• but what sampling algorithm is used?
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Area Sampling
• shade pixels according to the area covered by 

thickened line
• this is unweighted area sampling

• a rough approximation formulated by dividing each 
pixel into a finer grid of pixels
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Unweighted Area Sampling
• primitive cannot affect intensity of pixel if it 

does not intersect the pixel
• equal areas cause equal intensity, 

regardless of distance from pixel center to 
area
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Weighted Area Sampling
• unweighted sampling colors two pixels 

identically when the primitive cuts the 
same area through the two pixels

• intuitively, pixel cut through the center 
should be more heavily weighted than one 
cut along corner
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Weighted Area Sampling

• weighting function, W(x,y)
– specifies the contribution of primitive 

passing through the point (x, y) from pixel 
center

x

Intensity
W(x,y)
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Images
• an image is a 2D function �(x, y) that 

specifies intensity for each point (x, y)
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Sampling and Image
• our goal is to convert the continuous 

image to a discrete set of samples
• the graphics system’s display hardware 

will attempt to reconvert the samples into a 
continuous image: reconstruction
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Point Sampling an Image
• simplest sampling is on a grid
• sample depends

solely on value
at grid points
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Point Sampling
• multiply sample grid by image intensity to 

obtain a discrete set of points, or samples.

Sampling Geometry
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• some objects missed entirely, others 
poorly sampled

Sampling Errors
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Fixing Sampling Errors

• supersampling
– take more than one sample for each pixel and 

combine them
• how many 

samples is 
enough?

• how do we 
know no 
features are 
lost?
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