
11

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 1

Scan Conversion
Week 6, Mon 6 Oct 2003

• recap: Bresenham line algorithm
• scan conversion: polygons

Week 6, Fri 6 Oct 03 © Tamara Munzner 2

News
• Homework 1 out

– due Wed 15 Oct at beginning of class
– all late work must be in by Fri 17 Oct

• solutions out then to help with midterm studying

Week 6, Fri 6 Oct 03 © Tamara Munzner 3

Scan Conversion recap
• given vertices in DCS, fill in the pixels
– start with lines

Week 6, Fri 6 Oct 03 © Tamara Munzner 4

Lines: DDA -> Bresenham recap
– operate only on integers and avoid rounding
– decision variable: after drawing point (x,y) decide

whether to draw
• (x+1,y): case E (“east”)
• (x+1,y+1): case NE (“north-east”)

– create discriminator, d = d1 – d2
• If d > 0 y increases
• If d <= 0 y stays the same

– http://www.cs.technion.ac.il/~cs234325/Homepage/Applets/applets/bresenham/GermanApplet.html

Week 6, Fri 6 Oct 03 © Tamara Munzner 5

Scan Conversion of Lines
• discussion
– Bresenham sets same pixels as DDA
– intensity of line varies with its angle!

Week 6, Fri 6 Oct 03 © Tamara Munzner 6

Scan Conversion of Lines
• discussion
– Bresenham

• good for hardware implementations (integer!)

– DDA
• may be faster for software (depends on system)!
• floating point ops higher parallelized (pipelined)

– e.g. RISC CPUs from MIPS, SUN

• no if statements in inner loop
– more efficient use of processor pipelining

22

Week 6, Fri 6 Oct 03 © Tamara Munzner 7

Rasterizing Polygons
• In interactive graphics, polygons rule the world
• Two main reasons:

– Lowest common denominator for surfaces
• Can represent any surface with arbitrary accuracy
• Splines, mathematical functions, volumetric isosurfaces…

– Mathematical simplicity lends itself to simple,
regular rendering algorithms

• Like those we’re about to discuss…
• Such algorithms embed well in hardware

Week 6, Fri 6 Oct 03 © Tamara Munzner 8

Rasterizing Polygons
• Triangle is the minimal unit of a polygon

– All polygons can be broken up into
triangles

– Triangles are guaranteed to be:
• Planar
• Convex

Week 6, Fri 6 Oct 03 © Tamara Munzner 9

Triangularization
• Convex polygons easily

triangulated

• Concave polygons present
a challenge

Week 6, Fri 6 Oct 03 © Tamara Munzner 10

OpenGL Triangularization

– simple convex polygons
• break into triangles, trivial
• glBegin(GL_POLYGON) ... glEnd()

– concave or non-simple polygons
• break into triangles, more effort
• gluNewTess(), gluTessCallback(), ...

Week 6, Fri 6 Oct 03 © Tamara Munzner 11

Scan Conversion of Polygons
•Simple Algorithm:
– Draw edges of polygon
– Use flood-fill to draw interior

Week 6, Fri 6 Oct 03 © Tamara Munzner 12

Scan Conversion of Polygons
•Flood Fill
– Start with seed point
– Recursively set all neighbors until boundary is

hit

33

Week 6, Fri 6 Oct 03 © Tamara Munzner 13

Scan Conversion of Polygons
•Discussion – Flood Fill
– Breadth-first traversal
– Temporary memory needed for storing

boundary
– Pixels visited up to 4 times to check if already

set
– Problems with other primitives with same color

• Need per-pixel flag indicating if set already
• Needs to be cleared for every polygon!

Week 6, Fri 6 Oct 03 © Tamara Munzner 14

Scan Conversion of Polgons
•Scanline Algorithm
– Scanline: a line of pixels in an image

Week 6, Fri 6 Oct 03 © Tamara Munzner 15

Scan Conversion of Polygons
•Classes of Polygons
– Triangles

• Simple algorithms based on scan-conversion of
edges followed by filling of scanlines

– General polygons
• More complicated scanline algorithms

Week 6, Fri 6 Oct 03 © Tamara Munzner 16

Rasterizing Triangles
• Interactive graphics hardware commonly

uses edge walking or edge equation
techniques for rasterizing triangles

Week 6, Fri 6 Oct 03 © Tamara Munzner 17

Edge Walking
• Basic idea:

– Draw edges vertically
• Interpolate colors down edges

– Fill in horizontal spans for each
scanline

• At each scanline, interpolate
edge colors across span

Week 6, Fri 6 Oct 03 © Tamara Munzner 18

Edge Walking: Notes

• Order three triangle vertices in x and y
– Find middle point in y dimension and compute if it is to

the left or right of polygon. Also could be flat top or flat
bottom triangle

• We know where left and right edges are.
– Proceed from top scanline downwards
– Fill each span
– Until breakpoint or bottom vertex is reached

• Advantage: can be made very fast
• Disadvantages:

– Lots of finicky special cases

44

Week 6, Fri 6 Oct 03 © Tamara Munzner 19

Edge Walking: Disadvantages
• Fractional offsets:

• Be careful when interpolating color values!
• Beware of gaps between adjacent edges
• Beware of duplicating shared edges

Week 6, Fri 6 Oct 03 © Tamara Munzner 20

Edge Equations

• An edge equation is simply the equation of the line
defining that edge
– Q: What is the implicit equation of a line?
– A: Ax + By + C = 0
– Q: Given a point (x,y), what does plugging x & y into this

equation tell us?
– A: Whether the point is:

• On the line: Ax + By + C = 0
• “Above” the line: Ax + By + C > 0
• “Below” the line: Ax + By + C < 0

Week 6, Fri 6 Oct 03 © Tamara Munzner 21

Edge Equations
• Edge equations thus define two half-spaces:

Week 6, Fri 6 Oct 03 © Tamara Munzner 22

Edge Equations
• And a triangle can be defined as the

intersection of three positive half-spaces:

A1x + B1y + C1 < 0

A
2 x + B

2 y + C
2 < 0

A 3
x

+
B 3

y
+

C 3
<

0

A1x + B1y + C1 > 0

A 3
x

+
B 3

y
+

C 3
>

0 A
2 x + B

2 y + C
2 > 0

Week 6, Fri 6 Oct 03 © Tamara Munzner 23

Edge Equations
• So…simply turn on those pixels for which

all edge equations evaluate to > 0:

+++
-

-
-

Week 6, Fri 6 Oct 03 © Tamara Munzner 24

Using Edge Equations

• Which pixels: compute min,max
bounding box

• Edge equations: compute from vertices
• Orientation: ensure area is positive

(why?)

55

Week 6, Fri 6 Oct 03 © Tamara Munzner 25

Computing Edge Equations
• Want to calculate A, B, C for each edge from

(x1, y1) and (x2, y2)
• Treat it as a linear system:

Ax1 + By1 + C = 0
Ax2 + By2 + C = 0

• Notice: two equations, three unknowns
• What can we solve?
• Goal: solve for A & B in terms of C

Week 6, Fri 6 Oct 03 © Tamara Munzner 26

Computing Edge Equations

• Set up the linear system:

• Multiply both sides
by matrix inverse:

• Let C = x0 y1 - x1 y0 for convenience
– Then A = y0 - y1 and B = x0 – x1

�
�

�
�
�

�
−=�

�

�
�
�

�
�
�

�
�
�

�

1

1

11

00
C

B

A

yx

yx

�
�

�
�
�

�

−
−

−
−=�

�

�
�
�

�

01

01

0110 xx

yy

yxyx
C

B

A

Week 6, Fri 6 Oct 03 © Tamara Munzner 27

Edge Equations
• So…we can find edge equation from two verts.
• Given three corners P0, P1, P2 of a triangle, what

are our three edges?
• How do we make sure the half-spaces defined

by the edge equations all share the same sign
on the interior of the triangle?

• A: Be consistent (Ex: [P0 P1], [P1 P2], [P2 P0])
• How do we make sure that sign is positive?
• A: Test, and flip if needed (A= -A, B= -B, C= -C)

Week 6, Fri 6 Oct 03 © Tamara Munzner 28

Edge Equations: Code

• Basic structure of code:
– Setup: compute edge equations, bounding

box
– (Outer loop) For each scanline in bounding

box...
– (Inner loop) …check each pixel on

scanline, evaluating edge equations and
drawing the pixel if all three are positive

Week 6, Fri 6 Oct 03 © Tamara Munzner 29

Edge Equations: Code
findBoundingBox(&xmin, &xmax, &ymin, &ymax);
setupEdges (&a0,&b0,&c0,&a1,&b1,&c1,&a2,&b2,&c2);

/* Optimize this: */
for (int y = yMin; y <= yMax; y++) {

for (int x = xMin; x <= xMax; x++) {
float e0 = a0*x + b0*y + c0;
float e1 = a1*x + b1*y + c1;
float e2 = a2*x + b2*y + c2;
if (e0 > 0 && e1 > 0 && e2 > 0)

setPixel(x,y);
}}

Week 6, Fri 6 Oct 03 © Tamara Munzner 30

Scanline Algorithm

66

Week 6, Fri 6 Oct 03 © Tamara Munzner 32

Triangle Rasterization Issues

• Exactly which pixels should be lit?
• A: Those pixels inside the triangle edges
• What about pixels exactly on the edge?

– Draw them: order of triangles matters (it
shouldn’t)

– Don’t draw them: gaps possible between
triangles

• We need a consistent (if arbitrary) rule
– Example: draw pixels on left or top edge,

but not on right or bottom edge
Week 6, Fri 6 Oct 03 © Tamara Munzner 33

Triangle Rasterization Issues
• Sliver

Week 6, Fri 6 Oct 03 © Tamara Munzner 34

• Moving Slivers

Triangle Rasterization Issues

Week 6, Fri 6 Oct 03 © Tamara Munzner 35

Triangle Rasterization Issues

• Shared Edge Ordering

Week 6, Fri 6 Oct 03 © Tamara Munzner 36

General Polygon Rasterization
• Now that we can rasterize triangles, what

about general polygons?
• We’ll take an edge-walking approach

Week 6, Fri 6 Oct 03 © Tamara Munzner 37

General Polygon Rasterization
• Consider the following polygon:

• How do we know whether a given pixel on
the scanline is inside or outside the
polygon?

A

B

C

D

E

F

77

Week 6, Fri 6 Oct 03 © Tamara Munzner 38

Polygon Rasterization
• Inside-Outside Points

Week 6, Fri 6 Oct 03 © Tamara Munzner 39

Polygon Rasterization
• Inside-Outside Points

Week 6, Fri 6 Oct 03 © Tamara Munzner 40

General Polygon Rasterization

• Basic idea: use a parity test

for each scanline

edgeCnt = 0;

for each pixel on scanline (l to r)

if (oldpixel->newpixel crosses edge)

edgeCnt ++;

// draw the pixel if edgeCnt odd

if (edgeCnt % 2)

setPixel(pixel);

Week 6, Fri 6 Oct 03 © Tamara Munzner 41

General Polygon Rasterization
• Count your vertices carefully

– If exactly on pixel boundary?
– Shared vertices?
– Vertices defining horizontal

edge?
• Consider A-B versus I-H

B

C
D

E

FG

I H

J

A

Week 6, Fri 6 Oct 03 © Tamara Munzner 42

Polygon Rasterization Edge Cases

A B

D C

F

EH G

For scanline, determine all intersections of polygon edges with scanline
Sort edge intersections in least to greatest order
Use parity count to determine when pixels are drawn
Horizontal lines do not contribute to parity count
Ymin endpoints do contribute to parity count
Ymax endpoints do not contribute to parity count

Bottom edge drawn because A is min of AH. AB does not contribute

Not drawn because H is max of AH
And HG does not contribute Not drawn because D is min of ED

And increments counter to 2.
DC doesn’t contribute

Week 6, Fri 6 Oct 03 © Tamara Munzner 43

Faster Polygon Rasterization
• How can we optimize the code?

for each scanline
edgeCnt = 0;
for each pixel on scanline (l to r)

if (oldpixel->newpixel crosses edge)
edgeCnt ++;

// draw the pixel if edgeCnt odd
if (edgeCnt % 2)

setPixel(pixel);

• Big cost: testing pixels against each edge
• Solution: active edge table (AET)

88

Week 6, Fri 6 Oct 03 © Tamara Munzner 44

Active Edge Table
• Idea:

– Edges intersecting a given scanline are likely
to intersect the next scanline

– The order of edge intersections doesn’t
change much from scanline to scanline

Week 6, Fri 6 Oct 03 © Tamara Munzner 45

Active Edge Table

• Algorithm: scanline from bottom to top…
– Sort all edges by their minimum y coord
– Starting at bottom, add edges with Ymin= 0 to AET
– For each scanline:

• Sort edges in AET by x intersection
• Walk from left to right, setting pixels by parity rule
• Increment scanline
• Retire edges with Ymax < Y
• Add edges with Ymin < Y
• Recalculate edge intersections

– Stop when Y > Ymax for last edges

