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Scan Conversion
Week 6, Fri 10 Oct 2003

• sampling
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News
• project 1

– solution today
– hall of fame next week

• great work!!

• extra office hours
– Fri 10-11 usual, 11-1:30 extra lab hours
– Mon 10/13 no class, no office hours
– Tue 11-1 extra lab hours, 

• 4-5:30 my office hours rescheduled (FSC2618)
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News
• Office hours reminder: FSC 2618

– Mondays 10:30-11:30 or by appointment
– exceptions: Oct 20, Nov 10

• Readings
– Chap 8.9-8.11, Fri 10/3 slide notes
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Barycentric Coordinates recap
• weighted combination of vertices
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Transforming Normals
• nonuniform scaling does not work
• x-y=0 plane 

– line x=y
– normal: [1,-1,0] 

• ignore normalization for now
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• apply nonuniform scale: stretch along x by 2
– new plane x = 2y

• transformed normal

2x – y = 0 (2x=y)
– not perpendicular!

Transforming Normals
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should be x-2y=0 (x = 2y)
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Finding Correct Normal Transform
• transform a plane

MPP ='P
N QNN ='

0=PN T

0'' =PN T

0)()( =MPQN T

0=MPQN TT

IMQT =

( )TMQ 1−=

if we know M,if we know M,
what should Q be?what should Q be?

stay perpendicularstay perpendicular

substitute from abovesubstitute from above

T T T(AB) = B A

thus the normal to any surface has to be 
transformed by the inverse transpose of the 

modelling transformation

true iftrue if

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 8

Sampling and Antialiasing
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Samples
• most things in the real world are continuous
• everything in a computer is discrete
• the process of mapping a continuous function to a 

discrete one is called sampling
• the process of mapping a discrete function to a 

continuous one is called reconstruction
• the process of mapping a continuous variable to a 

discrete one is called quantization
• rendering an image requires sampling and 

quantization
• displaying an image involves reconstruction
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Displays → Signal Reconstruction

• All physical displays recreate a continuous 
image from a discrete sampled image by 
using a finite sized source of light for each 
pixel.

Reconstruction

Discrete input values. Continuous Light Output.
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Imaging Devices Area Sample
• video camera : CCD array.

Regular array of imaging
sensors.

y

x

��=
yx

IdxdykV
,

Value sensed is an area integral over a  pixel.

Intensity, I
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Imaging Devices Area Sample
• eye : photoreceptors

J. Liang, D. R. Williams and D. Miller, "Supernormal vision
and high- resolution retinal imaging through adaptive optics,"
J. Opt. Soc. Am. A 14, 2884- 2892 (1997)

Film is similar : irregular 
array of receptors.
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Slide © Rosalee Nerheim-Wolfe

Continuous Luminosity Signal
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Slide © Rosalee Nerheim-Wolfe

Sampled Luminosity
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Slide © Rosalee Nerheim-Wolfe

Reconstructed Luminosity
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Slide © Rosalee Nerheim-Wolfe

Reconstruction Artefact

Week 6, Fri 10 Oct  03 © Tamara Munzner 17

Bad Solution for Jaggies

Removed the jaggies, but also all the detail ! → Reduction in resolution

• blurring final image
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Line Segments
• we tried to sample a line segment so it 

would map to a 2D raster display
• we quantized the pixel values to 0 or 1
• we saw stair steps, or jaggies
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Line Segments
• instead, quantize to many shades
• but what sampling algorithm is used?
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Area Sampling
• shade pixels according to the area covered by 

thickened line
• this is unweighted area sampling

• a rough approximation formulated by dividing each 
pixel into a finer grid of pixels
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Unweighted Area Sampling
• primitive cannot affect intensity of pixel if it 

does not intersect the pixel
• equal areas cause equal intensity, 

regardless of distance from pixel center to 
area
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Weighted Area Sampling
• unweighted sampling colors two pixels 

identically when the primitive cuts the 
same area through the two pixels

• intuitively, pixel cut through the center 
should be more heavily weighted than one 
cut along corner
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Weighted Area Sampling

• weighting function, W(x,y)
– specifies the contribution of primitive 

passing through the point (x, y) from pixel 
center

x

Intensity
W(x,y)
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Images
• an image is a 2D function �(x, y) that 

specifies intensity for each point (x, y)
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Sampling and Image
• our goal is to convert the continuous 

image to a discrete set of samples
• the graphics system’s display hardware 

will attempt to reconvert the samples into a 
continuous image: reconstruction
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Point Sampling an Image
• simplest sampling is on a grid
• sample depends

solely on value
at grid points
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Point Sampling
• multiply sample grid by image intensity to 

obtain a discrete set of points, or samples.

Sampling Geometry
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• some objects missed entirely, others 
poorly sampled

Sampling Errors
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Fixing Sampling Errors

• supersampling
– take more than one sample for each pixel and 

combine them
• how many 

samples is 
enough?

• how do we 
know no 
features are 
lost?
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Spectral/Fourier Analysis

• spectral representation treats the function as 
a weighted sum of sines and cosines

• every function has two representations
– spatial (time) domain - normal representation
– frequency domain - spectral representation

• Fourier transform converts between the 
spatial and frequency domains.
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Spatial Domain

• image as spatial signal
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Spatial Frequency
• in time - cycles per second
• in space - cycles per meter, degree, etc.

• Fourier view: sum of signals
– pick frequency, phase shift
– familiar example: sound spectrum
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Summing Waves I
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Summing Waves II

• represent spatial 
signal as sum of 
sine waves 
(varying frequency 
and phase shift)

• very commonly
used to represent
sound “spectrum”
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Waves as Frequencies
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Frequency Domain
• height represents strength of each frequency

– sine wave: impulse
– square wave: infinite train of impulses
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Spectral/Fourier Analysis

• Fourier transform converts between the spatial 
and frequency domain

• Euler formula :
– real and imaginary components

• forward and reverse transforms very similar
– reversal in sign of imaginary component, scale constant

Spatial domain Frequency domain.
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Fourier Analysis

• convert spatial domain to frequency domain

– let f(x) indicate the intensity at a location in space, x 
(pixel value)

– u is a complex number representing frequency and 
phase shift

• i = sqrt (-1) … frequently not plotted

– F(u) is the amplitude of a particular frequency in a signal
• in this case the signal is f(x)
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Fourier Transform Example
spatial domain frequency domain
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Sampling Theorem
the ideal samples of a continuous function 
contain all the information in the original 
function if and only if the continuous function 
is sampled at a frequency greater than twice 
the highest frequency in the function

- Claude Shannon
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Nyquist Rate
• the lower bound on the sampling rate 

equals twice the highest frequency 
component in the image’s spectrum

• this lower bound is the Nyquist Rate
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Falling Below Nyquist Rate
• when sampling below Nyquist Rate, 

resulting signal looks like a lower-
frequency one
– this is aliasing!
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Band-limited Signals
• if you know a function contains no 
components of frequencies higher than x
– band-limited implies original function will not 

require any ideal functions with frequencies 
greater than x

– facilitates reconstruction
– avoids Nyquist Limit mistakes
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Falling Below Nyquist Rate
• when sampling below Nyquist Rate, resulting 

signal looks like a lower-frequency one
– safe with band-limits, guarantee that samples

are not derived from signal of higher frequency
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Flaws with Nyquist Rate
• samples may not align with peaks
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Filtering

• low pass

• high pass
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Filtering
• to lower Nyquist rate, remove high 

frequencies from image: low-pass filter
– only low frequencies remain: band-limited
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Filtering in Space Domain
• blurring or averaging pixels together.

Calculate integral of one 
function, f(x) by a sliding 
second function g(x-y). 

Known as Convolution.

� −=⊗= dyyxgxfgfxh )()()(

g(y)

Increment
x

h(x)

Integrate 
over y

f(x)
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Filtering in Frequency Domain

Image Frequency 
domain Filter Image

Fourier 
Transform

Fourier 
TransformLowpass filter

Highpass filter

• multiply signal’s spectrum by pulse function
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Filtering
• sinc (pulse) function is common filter:

– sinc(x) = sin (πx)/πx

Spatial Domain Frequency Domain
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Sinc Filter
• Slide filter along 

spatial domain 
and compute 
new pixel value 
that results from 
convolution
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Convolution

• multiplying two Fourier Transforms (F(u)G(u)) 
in the frequency domain == convolution 
(represented as *) on their inverse Fourier 
transforms in the spatial domain
• f(x) * g(x) = h(x)
– take the filter function, g(x) and center it at x
– take a weighted average of f(x) in the neighborhood 

of x
• weighting defined by g(x)
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Sampling in Frequency Domain
• remember, sampling was defined as 

multiplying a grid of delta functions by the 
continuous image

• called a convolution in spatial domain

sampling grid

function being sampled
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Sampling
• Multiplication of the sample with a regular train 

of delta functions.
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Convolution
• This amounts to accumulating copies of 

the function’s spectrum sampled at the 
delta functions of the sampling grid
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Convolution theorem.

• Theorem: Multiplication in the frequency 
domain is equivalent to convolution in the 
space domain.

• Symmetric Theorem: Multiplication in the 
space domain is equivalent to convolution in 
the frequency domain.
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Bilinear Filter
• sometimes called a tent filter
• easy to compute

– just linearly interpolate between samples

• finite extent and no negative values
• still has artifacts
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Sampling Pipeline
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Sampling Pipeline


