Shading Models recap

- flat shading
 - compute Phong lighting once for entire polygon
- Gouraud shading
 - compute Phong lighting at the vertices and interpolate lighting values across polygon
- Phong shading
 - compute averaged vertex normals
 - interpolate normals across polygon and perform Phong lighting across polygon

News

- demos
 - be 10 minutes early
 - bring hardcopy
 - to conserve paper: mpage p1.cpp > p1.ps
 - show TA timestamps
Shading Models Summary

- **flat shading**
 - compute Phong lighting once for entire polygon
- **Gouraud shading**
 - compute Phong lighting at the vertices and interpolate lighting values across polygon
- **Phong shading**
 - compute averaged vertex normals
 - interpolate normals across polygon and perform Phong lighting across polygon

Scan Conversion

- **objective**: scan conversion
 - convert continuous rendering primitives to discrete fragments/pixels
- **pixel definition**
 - a digital image is composed of a regular grid of picture elements: pixels
 - every pixel describes the color of the image at one discrete point

Scan Conversion of Lines

- **task**
 - determine pixels closest to line
 - endpoints of line are given in subpixel precision

Deriving Line Scan Conversion