Curves

Week 13, Mon 24 Nov 2003
News

• final
 – LSK 200, noon Tue Dec 9
 – must have photo ID (student ID best)

• hw1, proj2 grades out

• TA lab hours as usual this week
• reminder: my office hours in lab today
 – 10:30-11:30
Schedule: Lab Hours for P3

- Mon Dec 1
 - AG 10-12, AW 12-2
- Tue Dec 2
 - AG 10-12, AW 12-2, TM 2-4
- Wed Dec 3
 - AW 1-2, PZ 2-4
- Thu Dec 4
 - AG 11-1
- Fri Dec 5
 - AG 10-11, PZ 11-1
Schedule: Lectures

- Mon (today)
 - curves

- Wed
 - advanced rendering, final review

- Fri
 - evaluations, 3D CG in movies
 - Pixar shorts, The Shape of Space
Procedural Approaches recap

- fractal landscapes
- L-systems
- particle systems
- Perlin noise
Curves recap
Splines

• *spline* is parametric curve defined by *control points*
 – *knots*: control points that lie on curve
 – engineering drawing: spline was flexible wood, control points were physical weights

A Duck (weight)

Ducks trace out curve
Hermite Spline

- user provides
 - endpoints
 - derivatives at endpoints

\[
x = \begin{bmatrix} x_1 & x_0 & x'_1 & x'_0 \end{bmatrix} \begin{bmatrix} -2 & 3 & 0 & 0 \\ 2 & -3 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 1 & -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}
\]
Basis Functions

- a point on a Hermite curve is obtained by multiplying each control point by some function and summing
- functions are called basis functions
Sample Hermite Curves
Curves
Splines in 2D and 3D

• so far, defined only 1D splines:
 \[x = f(t; x_0, x_1, x'_0, x'_1) \]

• for higher dimensions, define control points in higher dimensions (that is, as vectors)

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} =
\begin{bmatrix}
 x_1 & x_0 & x'_1 & x'_0 \\
 y_1 & y_0 & y'_1 & y'_0 \\
 z_1 & z_0 & z'_1 & z'_0
\end{bmatrix}
\begin{bmatrix}
 -2 & 3 & 0 & 0 \\
 2 & -3 & 0 & 1 \\
 1 & -1 & 0 & 0 \\
 1 & -2 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 t^3 \\
 t^2 \\
 t \\
 1
\end{bmatrix}
\]
Bézier Curves

- similar to Hermite, but more intuitive definition of endpoint derivatives
- four control points, two of which are knots

Hermite Specification

\[\nabla p_1 \quad \nabla p_2 \]

\[p_1 \quad t = 0 \quad p_2 \quad t = 1 \]

Bézier Specification

\[p_2 \quad \text{"support"} \]

\[p_3 \quad \text{"chord"} \]

\[p_4 \quad t = 1 \]
Bézier Curves

• derivative values of Bezier curve at knots dependent on adjacent points

\[\nabla p_1 = 3(p_2 - p_1) \]
\[\nabla p_4 = 3(p_4 - p_3) \]
Bézier vs. Hermite

• can write Bezier in terms of Hermite
 – note: just matrix form of previous equations

\[
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 \frac{dx_1}{dt} & \frac{dy_1}{dt} \\
 \frac{dx_2}{dt} & \frac{dy_2}{dt}
\end{bmatrix}
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 -3 & 3 & 0 & 0 \\
 0 & 0 & -3 & 3
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
 x_4 & y_4
\end{bmatrix}
\]
Bézier vs. Hermite

• Now substitute this in for previous Hermite

\[
\begin{bmatrix}
 a_x & a_y \\
 b_x & b_y \\
 c_x & c_y \\
 d_x & d_y
\end{bmatrix}
= \begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 1 \\
 -3 & 3 & 0 & 0 & 0 \\
 0 & 0 & -3 & 3 & 3
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
 x_4 & y_4
\end{bmatrix}
\]

\(M_{\text{Hermite}} \times G_{\text{Bézier}} \)
Bézier Basis, Geometry Matrices

\[
\begin{bmatrix}
 a_x & a_y \\
 b_x & b_y \\
 c_x & c_y \\
 d_x & d_y \\
\end{bmatrix}
= \begin{bmatrix}
 -1 & 3 & -3 & 1 \\
 3 & -6 & 3 & 0 \\
 -3 & 3 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
 x_4 & y_4 \\
\end{bmatrix}
\]

\[M_{\text{Bez}i\text{er}} \quad G_{\text{Bez}i\text{er}}\]

- but why is $M_{\text{Bez}i\text{er}}$ a good basis matrix?
Bézier Blending Functions

- look at blending functions

- family of polynomials called order-3 Bernstein polynomials
 - $C(3, k) \ t^k \ (1-t)^{3-k}; \ 0 \leq k \leq 3$
 - all positive in interval $[0,1]$
 - sum is equal to 1

\[
p(t) = \begin{bmatrix}
(1-t)^3 \\
3t(1-t)^2 \\
3t^2(1-t) \\
t^3
\end{bmatrix}^T \begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix}
\]
Bézier Blending Functions

• every point on curve is linear combination of control points
• weights of combination are all positive
• sum of weights is 1
• therefore, curve is a convex combination of the control points
Bézier Curves

- curve will always remain within convex hull (bounding region) defined by control points
Bézier Curves

- interpolate between first, last control points
- 1st point’s tangent along line joining 1st, 2nd pts
- 4th point’s tangent along line joining 3rd, 4th pts
Comparing Hermite and Bezier

Hermite

Beziers
Comparing Hermite and Bezier

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html
Rendering Bezier Curves: Simple

- evaluate curve at fixed set of parameter values, join points with straight lines
- advantage: very simple
- disadvantages:
 - expensive to evaluate the curve at many points
 - no easy way of knowing how fine to sample points, and maybe sampling rate must be different along curve
 - no easy way to adapt: hard to measure deviation of line segment from exact curve
Rendering Beziers: Subdivision

- A cubic Bezier curve can be broken into two shorter cubic Bezier curves that exactly cover original curve.
- Suggests a rendering algorithm:
 - Keep breaking curve into sub-curves.
 - Stop when control points of each sub-curve are nearly collinear.
 - Draw the control polygon: polygon formed by control points.
Sub-Dividing Bezier Curves

- step 1: find the midpoints of the lines joining the original control vertices. call them M_{01}, M_{12}, M_{23}
Sub-Dividing Bezier Curves

• step 2: find the midpoints of the lines joining M_{01}, M_{12} and M_{12}, M_{23}. call them M_{012}, M_{123}
Sub-Dividing Bezier Curves

- step 3: find the midpoint of the line joining M_{012}, M_{123}. call it M_{0123}
Sub-Dividing Bezier Curves

- curve $P_0, M_{01}, M_{012}, M_{0123}$ exactly follows original from $t=0$ to $t=0.5$
- curve $M_{0123}, M_{123}, M_{23}, P_3$ exactly follows original from $t=0.5$ to $t=1$
Sub-Dividing Bezier Curves

- continue process to create smooth curve
de Casteljau’s Algorithm

- can find the point on a Bezier curve for any parameter value t with similar algorithm
 - for $t=0.25$, instead of taking midpoints take points 0.25 of the way

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm
Longer Curves

- a single cubic Bezier or Hermite curve can only capture a small class of curves
 - at most 2 inflection points
- one solution is to raise the degree
 - allows more control, at the expense of more control points and higher degree polynomials
 - control is not local, one control point influences entire curve
- better solution is to join pieces of cubic curve together into piecewise cubic curves
 - total curve can be broken into pieces, each of which is cubic
 - local control: each control point only influences a limited part of the curve
 - interaction and design is much easier
Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html
Continuity

- when two curves joined, typically want some degree of continuity across knot boundary
 - \(C^0 \), “C-zero”, point-wise continuous, curves share same point where they join
 - \(C^1 \), “C-one”, continuous derivatives
 - \(C^2 \), “C-two”, continuous second derivatives
Geometric Continuity

• derivative continuity is important for animation
 – if object moves along curve with constant parametric speed, should be no sudden jump at knots

• for other applications, tangent continuity suffices
 – requires that the tangents point in the same direction
 – referred to as G^1 geometric continuity
 – curves could be made C^1 with a re-parameterization
 – geometric version of C^2 is G^2, based on curves having the same radius of curvature across the knot
Achieving Continuity

• Hermite curves
 – user specifies derivatives, so C^1 by sharing points and derivatives across knot

• Bezier curves
 – they interpolate endpoints, so C^0 by sharing control pts
 – introduce additional constraints to get C^1
 • parametric derivative is a constant multiple of vector joining first/last 2 control points
 • so C^1 achieved by setting $P_{0,3}=P_{1,0}=J$, and making $P_{0,2}$ and J and $P_{1,1}$ collinear, with $J-P_{0,2}=P_{1,1}-J$
 • C^2 comes from further constraints on $P_{0,1}$ and $P_{1,2}$
B-Spline Curve

• start with a sequence of control points
• select four from middle of sequence

\((p_{i-2}, p_{i-1}, p_i, p_{i+1})\)

– Bezier and Hermite goes between \(p_{i-2}\) and \(p_{i+1}\)
– B-Spline doesn’t interpolate (touch) any of them but approximates the going through \(p_{i-1}\) and \(p_i\)
B-Spline

- by far the most popular spline used
- C_0, C_1, and C_2 continuous

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html
B-Spline

• locality of points

Figure 10-41
Local modification of a B-spline curve. Changing one of the control points in (a) produces curve (b), which is modified only in the neighborhood of the altered control point.