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News
• final

– LSK 200, noon Tue Dec 9
– must have photo ID (student ID best)

• hw1, proj2 grades out

• TA lab hours as usual this week
• reminder: my office hours in lab today

– 10:30-11:30
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Schedule: Lab Hours for P3
• Mon Dec 1

– AG 10-12, AW 12-2
• Tue Dec 2

– AG 10-12, AW 12-2, TM 2-4
• Wed Dec 3

– AW 1-2, PZ 2-4
• Thu Dec 4

– AG 11-1
• Fri Dec 5

– AG 10-11, PZ 11-1
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Schedule: Lectures

• Mon (today)
– curves

• Wed
– advanced rendering, final review

• Fri
– evaluations, 3D CG in movies

• Pixar shorts, The Shape of Space
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Procedural Approaches recap
• fractal landscapes

• L-systems

• particle systems

• Perlin noise
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Curves recap
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Splines
• spline is parametric 

curve defined by control 
points
– knots: control points that 

lie on curve
– engineering drawing: 

spline was flexible wood, 
control points were 
physical weights

A Duck (weight)

Ducks trace out curve
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Hermite Spline
• user provides

– endpoints
– derivatives at endpoints
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Basis Functions
• a point on a Hermite curve is obtained by 

multiplying each control point by some function 
and summing

• functions are called basis functions
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Sample Hermite Curves
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Curves
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Splines in 2D and 3D
• so far, defined only 1D splines: 

x=f(t:x0,x1,x’0,x’1)
• for higher dimensions, define control 

points in higher dimensions (that is, as 
vectors)

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−
−
−

−

�
�
�

�

�

�
�
�

�

�

′′
′′
′′

=
�
�
�

�

�

�
�
�

�

�

10121

0011
1032

0032
2

3

0101

0101

0101

t
t

t

zzzz

yyyy
xxxx

z

y
x



33

Week 13, Mon 24  Nov  03 © Tamara Munzner 13

Bézier Curves
• similar to Hermite, but more intuitive 

definition of endpoint derivatives
• four control points, two of which are knots
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Bézier Curves

• derivative values of Bezier curve at knots
dependent on adjacent points
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Bézier vs. Hermite
• can write Bezier in terms of Hermite

– note: just matrix form of previous equations
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Bézier vs. Hermite
• Now substitute this in for previous Hermite
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Bézier Basis, Geometry Matrices

• but why is MBezier a good basis matrix?
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Bézier Blending Functions
• look at blending functions

• family of polynomials called 
order-3 Bernstein polynomials
– C(3, k) tk (1-t)3-k; 0<= k <= 3
– all positive in interval [0,1]
– sum is equal to 1
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Bézier Blending Functions

• every point on curve is 
linear combination of 
control points

• weights of combination
are all positive

• sum of weights is 1
• therefore, curve is a 

convex combination of 
the control points
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Bézier Curves
• curve will always remain within convex hull 

(bounding region) defined by control points
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Bézier Curves
• interpolate between first, last control points
• 1st point’s tangent along line joining 1st, 2nd pts
• 4th point’s tangent along line joining 3rd, 4th pts
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Comparing Hermite and Bezier
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Comparing Hermite and Bezier
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demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html
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Rendering Bezier Curves: Simple
• evaluate curve at fixed set of 

parameter values, join points with 
straight lines

• advantage: very simple
• disadvantages:

– expensive to evaluate the curve at many 
points

– no easy way of knowing how fine to 
sample points, and maybe sampling rate 
must be different along curve

– no easy way to adapt: hard to measure 
deviation of line segment from exact curve
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Rendering Beziers: Subdivision
• a cubic Bezier curve can be broken into 

two shorter cubic Bezier curves that 
exactly cover original curve 

• suggests a rendering algorithm:
– keep breaking curve into sub-curves
– stop when control points of each sub-curve 

are nearly collinear
– draw the control polygon: polygon formed by

control points
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Sub-Dividing Bezier Curves
• step 1: find the midpoints of the lines 

joining the original control vertices. call
them M01, M12, M23

P0

P1 P2

P3

M01

M12

M23
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Sub-Dividing Bezier Curves
• step 2: find the midpoints of the lines 

joining M01, M12 and M12, M23. call them 
M012, M123

P0

P1 P2

P3

M01

M12

M23

M012 M123
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Sub-Dividing Bezier Curves
• step 3: find the midpoint of the line joining 

M012, M123. call it M0123

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123

Week 13, Mon 24  Nov  03 © Tamara Munzner 29

Sub-Dividing Bezier Curves
• curve P0, M01, M012, M0123 exactly follows 

original from t=0 to t=0.5
• curve M0123 , M123 , M23, P3 exactly follows 

original from t=0.5 to t=1

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123
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Sub-Dividing Bezier Curves

P0

P1 P2

P3

• continue process to create smooth curve
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de Casteljau’s Algorithm
• can find the point on a Bezier curve for any 

parameter value t with similar algorithm
– for t=0.25, instead of taking midpoints take points 

0.25 of the way

P0

P1
P2

P3

M01

M12

M23

t=0.25

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm
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Longer Curves
• a single cubic Bezier or Hermite curve can only 

capture a small class of curves
– at most 2 inflection points

• one solution is to raise the degree
– allows more control, at the expense of more control points 

and higher degree polynomials
– control is not local, one control point influences entire curve

• better solution is to join pieces of cubic curve together 
into piecewise cubic curves
– total curve can be broken into pieces, each of which is cubic
– local control: each control point only influences a limited part 

of the curve
– interaction and design is much easier
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Piecewise Bezier: Continuity 
Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html
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Continuity
• when two curves joined, typically want 

some degree of continuity across knot 
boundary
– C0, “C-zero”, point-wise continuous, curves 

share same point where they join
– C1, “C-one”, continuous derivatives
– C2, “C-two”, continuous second derivatives
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Geometric Continuity
• derivative continuity is important for animation

– if object moves along curve with constant parametric 
speed, should be no sudden jump at knots

• for other applications, tangent continuity suffices
– requires that the tangents point in the same direction
– referred to as G1 geometric continuity
– curves could be made C1 with a re-parameterization
– geometric version of C2 is G2, based on curves having 

the same radius of curvature across the knot
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Achieving Continuity
• Hermite curves

– user specifies derivatives, so C1 by sharing 
points and derivatives across knot

• Bezier curves
– they interpolate endpoints, so C0 by sharing 

control pts
– introduce additional constraints to get C1 

• parametric derivative is a constant multiple of vector 
joining first/last 2 control points

• so C1 achieved by setting P0,3=P1,0=J, and making P0,2
and J and P1,1 collinear, with J-P0,2=P1,1-J

• C2 comes from further constraints on P0,1 and P1,2
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B-Spline Curve
• start with a sequence of control points
• select four from middle of sequence 

(pi-2, pi-1, pi, pi+1)

– Bezier and Hermite goes between pi-2 and pi+1

– B-Spline doesn’t interpolate (touch) any of them 
but approximates the going through pi-1 and pi

P0

P1

P3

P2

P4 P5

P6
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B-Spline
• by far the most popular spline used
• C0, C1, and C2 continuous

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html
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B-Spline
• locality of points


