News

• final
 – LSK 200, noon Tue Dec 9
 – must have photo ID (student ID best)

• hw1, proj2 grades out

• TA lab hours as usual this week
• reminder: my office hours in lab today
 – 10:30-11:30

Schedule: Lab Hours for P3

• Mon Dec 1
 – AG 10-12, AW 12-2
• Tue Dec 2
 – AG 10-12, AW 12-2, TM 2-4
• Wed Dec 3
 – AW 1-2, PZ 2-4
• Thu Dec 4
 – AG 11-1
• Fri Dec 5
 – AG 10-11, PZ 11-1

Schedule: Lectures

• Mon (today)
 – curves
• Wed
 – advanced rendering, final review
• Fri
 – evaluations, 3D CG in movies
 • Pixar shorts, The Shape of Space

Procedural Approaches recap

• fractal landscapes
• L-systems
• particle systems
• Perlin noise

Curves recap
Splines

- spline is parametric curve defined by control points
 - knots: control points that lie on curve
 - engineering drawing: spline was flexible wood, control points were physical weights

Hermite Spline

- user provides
 - endpoints
 - derivatives at endpoints

Basis Functions

- a point on a Hermite curve is obtained by multiplying each control point by some function and summing
- functions are called basis functions

Sample Hermite Curves

Splines in 2D and 3D

- so far, defined only 1D splines: \(x = f(t;x_0, x_1, x_0', x_1') \)
- for higher dimensions, define control points in higher dimensions (that is, as vectors)
 \[
 \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}
 =
 \begin{bmatrix}
 x_0 & x_0' \\
 y_0 & y_0' \\
 z_0 & z_0'
 \end{bmatrix}
 \begin{bmatrix}
 -2 & 3 & 0 & 0 \\
 2 & -3 & 0 & 1 \\
 1 & -1 & 0 & 0 \\
 1 & -2 & 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 t^3 \\
 t^2 \\
 t \\
 1
 \end{bmatrix}
 \]

Ducks trace out curve

Ducks trace out curve

Ducks trace out curve
Bézier Curves

- similar to Hermite, but more intuitive definition of endpoint derivatives
- four control points, two of which are knots

\[
\begin{align*}
P_t & = (1-t)^3 P_0 + 3(1-t)^2 t P_1 + 3(1-t) t^2 P_2 + t^3 P_3
\end{align*}
\]

Bézier vs. Hermite

- can write Bezier in terms of Hermite
 - note: just matrix form of previous equations
 \[
 \begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
 x_4 & y_4
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 -3 & 3 & 0 & 0 \\
 0 & 0 & -3 & 3
 \end{bmatrix}
 \begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
 x_4 & y_4
 \end{bmatrix}
\]

Bézier Basis, Geometry Matrices

- but why is \(M_{\text{Bezier}} \) a good basis matrix?

\[
\begin{bmatrix}
 a_x & a_y \\
 b_x & b_y \\
 c_x & c_y \\
 d_x & d_y
 \end{bmatrix}
\begin{bmatrix}
 1 & 3 & -3 & 1 \\
 3 & -6 & 3 & 0 \\
 -3 & 3 & 0 & 0 \\
 1 & 0 & 0 & 0
 \end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
 x_4 & y_4
 \end{bmatrix}
\]

Bézier Blending Functions

- look at blending functions
- family of polynomials called order-3 Bernstein polynomials
 \[
 p(t) = \binom{3}{k} t^k (1-t)^{3-k} \quad 0 \leq k \leq 3
 \]
 - all positive in interval \([0,1]\\)
 - sum is equal to 1

\[
\begin{align*}
 p(t) &= \binom{3}{k} t^k (1-t)^{3-k} \\
 & = \begin{cases}
 (1-t)^3 & \text{if } k = 0 \\
 3(1-t)^2 t & \text{if } k = 1 \\
 3t(1-t)^2 & \text{if } k = 2 \\
 t^3 & \text{if } k = 3
 \end{cases}
\end{align*}
\]

\[
\begin{bmatrix}
 p_1 \\
 p_2 \\
 p_3 \\
 p_4
 \end{bmatrix}
\begin{bmatrix}
 1 & 1 & 1 & 1 \\
 1 & 0 & -3 & 3 \\
 0 & 0 & 6 & -6 \\
 0 & 0 & -3 & 3
 \end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
 x_4 & y_4
 \end{bmatrix}
\]
Bézier Blending Functions

- every point on curve is linear combination of control points
- weights of combination are all positive
- sum of weights is 1
- therefore, curve is a convex combination of the control points

Bézier Curves

- curve will always remain within convex hull (bounding region) defined by control points

Bézier Curves

- interpolate between first, last control points
- 1st point’s tangent along line joining 1st, 2nd pts
- 4th point’s tangent along line joining 3rd, 4th pts

Comparing Hermite and Bezier

- Hermite
- Bezier

Comparing Hermite and Bezier

demo: www.siggraph.org/education/materials/HyperGraph/modeling/curves/demoprog/curve.html

Rendering Bezier Curves: Simple

- evaluate curve at fixed set of parameter values, join points with straight lines
- advantage: very simple
- disadvantages:
 - expensive to evaluate the curve at many points
 - no easy way of knowing how fine to sample points, and maybe sampling rate must be different along curve
 - no easy way to adapt: hard to measure deviation of line segment from exact curve
Rendering Bezier Curves: Subdivision

- A cubic Bezier curve can be broken into two shorter cubic Bezier curves that exactly cover original curve.
- Suggests a rendering algorithm:
 - Keep breaking curve into sub-curves.
 - Stop when control points of each sub-curve are nearly collinear.
 - Draw the control polygon: polygon formed by control points.

Sub-Dividing Bezier Curves

- Step 1: Find the midpoints of the lines joining the original control vertices. Call them M_{01}, M_{12}, M_{23}.
- Step 2: Find the midpoints of the lines joining M_{01}, M_{12} and M_{12}, M_{23}. Call them M_{012}, M_{123}.
- Step 3: Find the midpoint of the line joining M_{012}, M_{123}. Call it M_{0123}.
- Curve P_0, M_{01}, M_{012}, M_{0123} exactly follows original from $t=0$ to $t=0.5$.
- Curve M_{0123}, M_{123}, M_{23}, P_3 exactly follows original from $t=0.5$ to $t=1$.
- Continue process to create smooth curve.
de Casteljau’s Algorithm
• can find the point on a Bezier curve for any parameter value \(t \) with similar algorithm
 – for \(t=0.25 \), instead of taking midpoints take points 0.25 of the way

Longer Curves
• a single cubic Bezier or Hermite curve can only capture a small class of curves
 – at most 2 inflection points
• one solution is to raise the degree
 – allows more control, at the expense of more control points and higher degree polynomials
 – control is not local, one control point influences entire curve
• better solution is to join pieces of cubic curve together into piecewise cubic curves
 – total curve can be broken into pieces, each of which is cubic
 – local control: each control point only influences a limited part of the curve
 – interaction and design is much easier

Piecewise Bezier: Continuity

Problems

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm

Continuity
• when two curves joined, typically want some degree of continuity across knot boundary
 – \(C^0 \), “C-zero”, point-wise continuous, curves share same point where they join
 – \(C^1 \), “C-one”, continuous derivatives
 – \(C^2 \), “C-two”, continuous second derivatives

Geometric Continuity
• derivative continuity is important for animation
 – if object moves along curve with constant parametric speed, should be no sudden jump at knots
• for other applications, tangent continuity suffices
 – requires that the tangents point in the same direction
 – referred to as \(G^1 \) geometric continuity
 – curves could be made \(C^1 \) with a re-parameterization
 – geometric version of \(C^0 \) is \(G^0 \), based on curves having the same radius of curvature across the knot

Achieving Continuity
• Hermite curves
 – user specifies derivatives, so \(C^1 \) by sharing points and derivatives across knot
• Bezier curves
 – they interpolate endpoints, so \(C^0 \) by sharing control pts
 – introduce additional constraints to get \(C^1 \)
 • parametric derivative is a constant multiple of vector joining first/last 2 control points
 • so \(C^1 \) achieved by setting \(P_{0.5,0.5}=J \), and making \(P_{0.5,0.5} \) and \(J \) and \(P_{1,1} \) collinear, with \(J=P_{0.5,0.5} \), and \(P_{1,1} \) collinear.
B-Spline Curve

- start with a sequence of control points
- select four from middle of sequence
 \((p_{i-2}, p_{i-1}, p_i, p_{i+1})\)
 - Bezier and Hermite goes between \(p_{i-2}\) and \(p_{i+1}\)
 - B-Spline doesn’t interpolate (touch) any of them but approximates the going through \(p_{i-1}\) and \(p_i\)

B-Spline

- by far the most popular spline used
- \(C_0, C_1,\) and \(C_2\) continuous

B-Spline

- locality of points