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News
• midterm solutions out
• late hw2: handin box 18, CICSR basement
• project 3 out

• final location announced
– LSK 200
– noon Tue Dec 9
– must have photo ID

• student ID best
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Display Technologies recap
• mobile display with laser to retina
• stereo glasses/display
• 3D scanners
– laser stripe + camera
– laser time-of-flight
– cameras only, depth from stereo

• Shape Tape
• haptics (Phantom)
• 3D printers
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Color LCD Answer
• three subpixels for each pixel

– color filter on each

http://electronics.howstuffworks.com/lcd5.htm
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Virtual Trackball recap
• Rotation about axis  

n = p1 x p2

• Angle of rotation:
p1 • p2 = |p1| |p2| cos �

• Fixed point is origin  
if use [-1, 1] cube
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Procedural Approaches
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Procedural Modeling
• textures, geometry

– explicitly stored in memory

• procedural approach
– compute something on the fly
– often less memory cost
– visual richness

• fractals, particle systems, noise
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Fractal Landscapes
• fractals: not just for “showing math”

– triangle subdivision
– vertex displacement
– recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html
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Self-Similarity
• infinite nesting of structure on all scales 
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Fractal Dimension
• D = log(N)/log(r) 

N = measure, r = subdivision scale
– Hausdorff dimension: noninteger

D = log(N)/log(r) D = log(4)/log(3) = 1.26

coastline of Britain

Koch snowflake

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html
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Language-Based Generation
• L-Systems: after Lindenmayer 

– Koch snowflake: F :- FLFRRFLF
• F: forward, R: right, L: left

– Mariano’s Bush:
F=FF-[-F+F+F]+[+F-F-F] }
• angle 16 

http://spanky.triumf.ca/www/fractint/lsys/plants.html
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1D: Midpoint Displacement
• divide in half
• randomly displace
• scale variance by half

http://www.gameprogrammer.com/fractal.html
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2D: Diamond-Square
• diamond step

– generate a new value at square midpoint
• average corner values + random amount 
• gives diamonds when have multiple squares in grid

• square step
– generate new value at diamond midpoint

• average corner values + random amount
• gives squares again in grid
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Particle Systems
• loosely defined

– modeling, or rendering, or animation

• key criteria
– collection of particles
– random element controls attributes

• position, velocity (speed and direction), color, 
lifetime, age, shape, size, transparency

• predefined stochastic limits: bounds, variance, 
type of distribution
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Particle System Examples
• objects changing fluidly over time

– fire, steam, smoke, water

• objects fluid in form
– grass, hair, dust

• physical processes
– waterfalls, fireworks, explosions

• group dynamics: behavioral
– birds/bats flock, fish school, 

human crowd, dinosaur/elephant stampede
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Explosions Animation

http://www.cs.wpi.edu/%7Ematt/courses/cs563/talks/psys.html
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Boid Animation
• bird-like objects
• http://www.red3d.com/cwr/boids/
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Particle Life Cycle
• generation

– randomly within “fuzzy” location
– initial attribute values: random or fixed

• dynamics
– attributes of each particle may vary over time

• color darker as particle cools off after explosion

– can also depend on other attributes
• position: previous particle position + velocity + time

• death
– age and lifetime for each particle (in frames)
– or if out of bounds, too dark to see, etc
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Particle System Rendering
• expensive to render thousands of particles
• simplify: avoid hidden surface calculations

– each particle has small graphical primitive (blob)
– pixel color: sum of all particles mapping to it

• some effects easy
– temporal anti-aliasing (motion blur)

• normally expensive: supersampling over time
• position, velocity known for each particle
• just render as streak
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Perlin Noise
• excellent tutorial explanation 

http://www.kenperlin.com/talk1

http://mrl.nyu.edu/~perlin/planet/
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Procedural Approaches Summary
• fractals
• L-systems
• particle systems
• Perlin noise

• not at all complete list!
– big subject: entire classes on this alone
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Curves 
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Parametric Curves
• parametric form for a line:

• x, y and z are each given by an equation 
that involves:
– parameter t
– some user specified control points, x0 and x1

• this is an example of a parametric curve
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Splines
• a spline is a parametric curve defined by 

control points
– term “spline” dates from engineering drawing, 

where a spline was a piece of flexible wood 
used to draw smooth curves

– control points are adjusted by the user to 
control shape of curve
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Splines – Old School
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Splines - History
• Draftsman use ‘ducks’ 

and strips of wood 
(splines) to draw 
curves

• Wood splines have 
second-order continuity

• And pass through the 
control points

A Duck (weight)

Ducks trace out curve
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Hermite Spline
• Hermite spline is curve for which user

provides:
– endpoints of the curve
– parametric derivatives of the curve at the 

endpoints
• parametric derivatives are dx/dt, dy/dt, dz/dt

– more derivatives would be required for higher 
order curves
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Hermite Cubic Splines
• example of knot and continuity constraints
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Hermite Spline (2)
• say user provides 
• cubic spline has degree 3, is of the form:

– for some constants a, b, c and d derived from 
the control points, but how?

• we have constraints:
– curve must pass through x0 when t=0
– derivative must be x’0 when t=0
– curve must pass through x1 when t=1
– derivative must be x’1 when t=1
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Hermite Spline (3)
• solving for the unknowns gives

• rearranging gives
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Basis Functions
• a point on a Hermite curve is obtained by 

multiplying each control point by some function 
and summing

• functions are called basis functions
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Sample Hermite Curves
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Splines in 2D and 3D
• we have defined only 1D splines: 

x=f(t:x0,x1,x’0,x’1)
• for higher dimensions, define control 

points in higher dimensions (that is, as 
vectors)
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Bezier Curves (1)
• different choices of basis functions give 

different curves
– choice of basis determines how control points 

influence curve
– in Hermite case, two control points define 

endpoints, and two more define parametric 
derivatives

• for Bezier curves, two control points define 
endpoints, and two control the tangents at 
the endpoints in a geometric way
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Bezier Curves (2)
• user supplies d control points, pi

• write the curve as:

• functions Bi
d are the Bernstein polynomials

of degree d
• this equation can be written as matrix

equation also
– there is a matrix to take Hermite control points 

to Bezier control points
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Bezier Basis Functions for d=3
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Some Bezier Curves
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Bezier Curve Properties
• first and last control points are interpolated
• tangent to curve at first control point is along 

line joining first and second control points
• tangent at last control point is along line joining 

second last and last control points
• curve lies entirely within convex hull of its 

control points
– Bernstein polynomials (the basis functions) sum to 

1 and are everywhere positive
• can be rendered in many ways

– convert to line segments with subdivision alg
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Rendering Bezier Curves (1)
• evaluate curve at fixed set of 

parameter values and join  points with 
straight lines

• advantage: very simple
• disadvantages:

– expensive to evaluate the curve at many 
points

– no easy way of knowing how fine to 
sample points, and maybe sampling rate 
must be different along curve

– no easy way to adapt: hard to measure 
deviation of line segment from exact curve
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Rendering Bezier Curves (2)
• recall that Bezier curve lies entirely within 

convex hull of its control vertices
• if control vertices are nearly collinear, then

convex hull is good approximation to curve
• also, a cubic Bezier curve can be broken into 

two shorter cubic Bezier curves that exactly 
cover original curve 

• suggests a rendering algorithm:
– keep breaking curve into sub-curves
– stop when control points of each sub-curve are nearly 

collinear
– draw the control polygon - the polygon formed by

control points
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Sub-Dividing Bezier Curves
• step 1: find the midpoints of the lines 

joining the original control vertices. call
them M01, M12, M23

• step 2: find the midpoints of the lines 
joining M01, M12 and M12, M23. call them 
M012, M123

• step 3: find the midpoint of the line joining 
M012, M123. call it M0123
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Sub-Dividing Bezier Curves
• curve with control points P0, M01, M012 and 

M0123 exactly follows the original curve 
from the point with t=0 to the point with 
t=0.5

• curve with control points M0123 , M123 , M23
and P3 exactly follows the original curve 
from the point with t=0.5 to the point with 
t=1
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Sub-Dividing Bezier Curves

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123
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Sub-Dividing Bezier Curves

P0

P1 P2

P3
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de Casteljau’s Algorithm
• You can find the point on a Bezier curve for any 

parameter value t with a similar algorithm
• Say you want t=0.25, instead of taking midpoints 

take points 0.25 of the way

P0

P1
P2

P3

M01

M12

M23

t=0.25
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Invariance
• translational invariance means that translating control points 

and then evaluating curve is same as evaluating and then 
translating curve

• rotational invariance means that rotating control points and 
then evaluating curve is same as evaluating and then
rotating curve

• these properties are essential for parametric curves used in 
graphics

• easy to prove that Bezier curves, Hermite curves and 
everything else we will study are translation and rotation 
invariant

• some forms of curves, rational splines, are also perspective 
invariant
– can do perspective transform of control points and then evaluate 

curve


