
11

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 1

Procedural Approaches
Curves

Week 12, Fri 21 Nov 2003

Week 12, Fri 21 Nov 03 © Tamara Munzner 2

News
• midterm solutions out
• late hw2: handin box 18, CICSR basement
• project 3 out

• final location announced
– LSK 200
– noon Tue Dec 9
– must have photo ID

• student ID best

Week 12, Fri 21 Nov 03 © Tamara Munzner 3

Display Technologies recap
• mobile display with laser to retina
• stereo glasses/display
• 3D scanners
– laser stripe + camera
– laser time-of-flight
– cameras only, depth from stereo

• Shape Tape
• haptics (Phantom)
• 3D printers

Week 12, Fri 21 Nov 03 © Tamara Munzner 4

Color LCD Answer
• three subpixels for each pixel

– color filter on each

http://electronics.howstuffworks.com/lcd5.htm

Week 12, Fri 21 Nov 03 © Tamara Munzner 5

Virtual Trackball recap
• Rotation about axis

n = p1 x p2

• Angle of rotation:
p1 • p2 = |p1| |p2| cos �

• Fixed point is origin
if use [-1, 1] cube

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 6

Procedural Approaches

22

Week 12, Fri 21 Nov 03 © Tamara Munzner 7

Procedural Modeling
• textures, geometry

– explicitly stored in memory

• procedural approach
– compute something on the fly
– often less memory cost
– visual richness

• fractals, particle systems, noise
Week 12, Fri 21 Nov 03 © Tamara Munzner 8

Fractal Landscapes
• fractals: not just for “showing math”

– triangle subdivision
– vertex displacement
– recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html

Week 12, Fri 21 Nov 03 © Tamara Munzner 9

Self-Similarity
• infinite nesting of structure on all scales

Week 12, Fri 21 Nov 03 © Tamara Munzner 10

Fractal Dimension
• D = log(N)/log(r)

N = measure, r = subdivision scale
– Hausdorff dimension: noninteger

D = log(N)/log(r) D = log(4)/log(3) = 1.26

coastline of Britain

Koch snowflake

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html

Week 12, Fri 21 Nov 03 © Tamara Munzner 11

Language-Based Generation
• L-Systems: after Lindenmayer

– Koch snowflake: F :- FLFRRFLF
• F: forward, R: right, L: left

– Mariano’s Bush:
F=FF-[-F+F+F]+[+F-F-F] }
• angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html
Week 12, Fri 21 Nov 03 © Tamara Munzner 12

1D: Midpoint Displacement
• divide in half
• randomly displace
• scale variance by half

http://www.gameprogrammer.com/fractal.html

33

Week 12, Fri 21 Nov 03 © Tamara Munzner 13

2D: Diamond-Square
• diamond step

– generate a new value at square midpoint
• average corner values + random amount
• gives diamonds when have multiple squares in grid

• square step
– generate new value at diamond midpoint

• average corner values + random amount
• gives squares again in grid

Week 12, Fri 21 Nov 03 © Tamara Munzner 14

Particle Systems
• loosely defined

– modeling, or rendering, or animation

• key criteria
– collection of particles
– random element controls attributes

• position, velocity (speed and direction), color,
lifetime, age, shape, size, transparency

• predefined stochastic limits: bounds, variance,
type of distribution

Week 12, Fri 21 Nov 03 © Tamara Munzner 15

Particle System Examples
• objects changing fluidly over time

– fire, steam, smoke, water

• objects fluid in form
– grass, hair, dust

• physical processes
– waterfalls, fireworks, explosions

• group dynamics: behavioral
– birds/bats flock, fish school,

human crowd, dinosaur/elephant stampede

Week 12, Fri 21 Nov 03 © Tamara Munzner 16

Explosions Animation

http://www.cs.wpi.edu/%7Ematt/courses/cs563/talks/psys.html

Week 12, Fri 21 Nov 03 © Tamara Munzner 17

Boid Animation
• bird-like objects
• http://www.red3d.com/cwr/boids/

Week 12, Fri 21 Nov 03 © Tamara Munzner 18

Particle Life Cycle
• generation

– randomly within “fuzzy” location
– initial attribute values: random or fixed

• dynamics
– attributes of each particle may vary over time

• color darker as particle cools off after explosion

– can also depend on other attributes
• position: previous particle position + velocity + time

• death
– age and lifetime for each particle (in frames)
– or if out of bounds, too dark to see, etc

44

Week 12, Fri 21 Nov 03 © Tamara Munzner 19

Particle System Rendering
• expensive to render thousands of particles
• simplify: avoid hidden surface calculations

– each particle has small graphical primitive (blob)
– pixel color: sum of all particles mapping to it

• some effects easy
– temporal anti-aliasing (motion blur)

• normally expensive: supersampling over time
• position, velocity known for each particle
• just render as streak

Week 12, Fri 21 Nov 03 © Tamara Munzner 20

Perlin Noise
• excellent tutorial explanation

http://www.kenperlin.com/talk1

http://mrl.nyu.edu/~perlin/planet/

Week 12, Fri 21 Nov 03 © Tamara Munzner 21

Procedural Approaches Summary
• fractals
• L-systems
• particle systems
• Perlin noise

• not at all complete list!
– big subject: entire classes on this alone

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 22

Curves

Week 12, Fri 21 Nov 03 © Tamara Munzner 23

Parametric Curves
• parametric form for a line:

• x, y and z are each given by an equation
that involves:
– parameter t
– some user specified control points, x0 and x1

• this is an example of a parametric curve

10

10

10

)1(

)1(

)1(

zttzz

yttyy

xttxx

−+=
−+=
−+=

Week 12, Fri 21 Nov 03 © Tamara Munzner 24

Splines
• a spline is a parametric curve defined by

control points
– term “spline” dates from engineering drawing,

where a spline was a piece of flexible wood
used to draw smooth curves

– control points are adjusted by the user to
control shape of curve

55

Week 12, Fri 21 Nov 03 © Tamara Munzner 25

Splines – Old School

Week 12, Fri 21 Nov 03 © Tamara Munzner 26

Splines - History
• Draftsman use ‘ducks’

and strips of wood
(splines) to draw
curves

• Wood splines have
second-order continuity

• And pass through the
control points

A Duck (weight)

Ducks trace out curve

Week 12, Fri 21 Nov 03 © Tamara Munzner 27

Hermite Spline
• Hermite spline is curve for which user

provides:
– endpoints of the curve
– parametric derivatives of the curve at the

endpoints
• parametric derivatives are dx/dt, dy/dt, dz/dt

– more derivatives would be required for higher
order curves

Week 12, Fri 21 Nov 03 © Tamara Munzner 28

Hermite Cubic Splines
• example of knot and continuity constraints

Week 12, Fri 21 Nov 03 © Tamara Munzner 29

Hermite Spline (2)
• say user provides
• cubic spline has degree 3, is of the form:

– for some constants a, b, c and d derived from
the control points, but how?

• we have constraints:
– curve must pass through x0 when t=0
– derivative must be x’0 when t=0
– curve must pass through x1 when t=1
– derivative must be x’1 when t=1

dctbtatx +++= 23

1010 ,,, xxxx ′′

Week 12, Fri 21 Nov 03 © Tamara Munzner 30

Hermite Spline (3)
• solving for the unknowns gives

• rearranging gives
0

0

0101

0101

233
22

xd
xc

xxxxb
xxxxa

=
′=

′−′−−=
′+′++−=

)2(
)(x

)132(
)32(

23
0

23
1

23
0

23
1

tttx
tt

ttx
ttxx

+−′+
−′+

+−+
+−=

[]
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−
−
−

−

′′=

10121
0011
1032
0032

2

3

0101 t

t

t

xxxxxor

66

Week 12, Fri 21 Nov 03 © Tamara Munzner 31

Basis Functions
• a point on a Hermite curve is obtained by

multiplying each control point by some function
and summing

• functions are called basis functions

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1
x0
x'1
x'0

Week 12, Fri 21 Nov 03 © Tamara Munzner 32

Sample Hermite Curves

Week 12, Fri 21 Nov 03 © Tamara Munzner 33

Splines in 2D and 3D
• we have defined only 1D splines:

x=f(t:x0,x1,x’0,x’1)
• for higher dimensions, define control

points in higher dimensions (that is, as
vectors)

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−
−
−

−

�
�
�

�

�

�
�
�

�

�

′′
′′
′′

=
�
�
�

�

�

�
�
�

�

�

10121

0011
1032

0032
2

3

0101

0101

0101

t
t

t

zzzz

yyyy
xxxx

z

y
x

Week 12, Fri 21 Nov 03 © Tamara Munzner 34

Bezier Curves (1)
• different choices of basis functions give

different curves
– choice of basis determines how control points

influence curve
– in Hermite case, two control points define

endpoints, and two more define parametric
derivatives

• for Bezier curves, two control points define
endpoints, and two control the tangents at
the endpoints in a geometric way

Week 12, Fri 21 Nov 03 © Tamara Munzner 35

Bezier Curves (2)
• user supplies d control points, pi

• write the curve as:

• functions Bi
d are the Bernstein polynomials

of degree d
• this equation can be written as matrix

equation also
– there is a matrix to take Hermite control points

to Bezier control points

() ()�
=

=
d

i

d
ii tBt

0

px () () idid
i tt

i
d

tB −−��
	

��
�

= 1

Week 12, Fri 21 Nov 03 © Tamara Munzner 36

Bezier Basis Functions for d=3

0

0.2

0.4

0.6

0.8

1

1.2

B0
B1
B2
B3

77

Week 12, Fri 21 Nov 03 © Tamara Munzner 37

Some Bezier Curves

Week 12, Fri 21 Nov 03 © Tamara Munzner 38

Bezier Curve Properties
• first and last control points are interpolated
• tangent to curve at first control point is along

line joining first and second control points
• tangent at last control point is along line joining

second last and last control points
• curve lies entirely within convex hull of its

control points
– Bernstein polynomials (the basis functions) sum to

1 and are everywhere positive
• can be rendered in many ways

– convert to line segments with subdivision alg

Week 12, Fri 21 Nov 03 © Tamara Munzner 39

Rendering Bezier Curves (1)
• evaluate curve at fixed set of

parameter values and join points with
straight lines

• advantage: very simple
• disadvantages:

– expensive to evaluate the curve at many
points

– no easy way of knowing how fine to
sample points, and maybe sampling rate
must be different along curve

– no easy way to adapt: hard to measure
deviation of line segment from exact curve

Week 12, Fri 21 Nov 03 © Tamara Munzner 40

Rendering Bezier Curves (2)
• recall that Bezier curve lies entirely within

convex hull of its control vertices
• if control vertices are nearly collinear, then

convex hull is good approximation to curve
• also, a cubic Bezier curve can be broken into

two shorter cubic Bezier curves that exactly
cover original curve

• suggests a rendering algorithm:
– keep breaking curve into sub-curves
– stop when control points of each sub-curve are nearly

collinear
– draw the control polygon - the polygon formed by

control points

Week 12, Fri 21 Nov 03 © Tamara Munzner 41

Sub-Dividing Bezier Curves
• step 1: find the midpoints of the lines

joining the original control vertices. call
them M01, M12, M23

• step 2: find the midpoints of the lines
joining M01, M12 and M12, M23. call them
M012, M123

• step 3: find the midpoint of the line joining
M012, M123. call it M0123

Week 12, Fri 21 Nov 03 © Tamara Munzner 42

Sub-Dividing Bezier Curves
• curve with control points P0, M01, M012 and

M0123 exactly follows the original curve
from the point with t=0 to the point with
t=0.5

• curve with control points M0123 , M123 , M23
and P3 exactly follows the original curve
from the point with t=0.5 to the point with
t=1

88

Week 12, Fri 21 Nov 03 © Tamara Munzner 43

Sub-Dividing Bezier Curves

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123

Week 12, Fri 21 Nov 03 © Tamara Munzner 44

Sub-Dividing Bezier Curves

P0

P1 P2

P3

Week 12, Fri 21 Nov 03 © Tamara Munzner 45

de Casteljau’s Algorithm
• You can find the point on a Bezier curve for any

parameter value t with a similar algorithm
• Say you want t=0.25, instead of taking midpoints

take points 0.25 of the way

P0

P1
P2

P3

M01

M12

M23

t=0.25

Week 12, Fri 21 Nov 03 © Tamara Munzner 46

Invariance
• translational invariance means that translating control points

and then evaluating curve is same as evaluating and then
translating curve

• rotational invariance means that rotating control points and
then evaluating curve is same as evaluating and then
rotating curve

• these properties are essential for parametric curves used in
graphics

• easy to prove that Bezier curves, Hermite curves and
everything else we will study are translation and rotation
invariant

• some forms of curves, rational splines, are also perspective
invariant
– can do perspective transform of control points and then evaluate

curve

