
11

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 1

Visibility: Z Buffering
Week 10, Mon 3 Nov 2003

Week 10, Mon 3 Nov 03 © Tamara Munzner 2

Poll
• how far are people on project 2?
• preferences for

– Plan A: status quo
• P2 stays due Tue Nov 4, stays 10% of total grade
• P3 is “the big one” stays 15%, due Fri Nov 28

– Plan B: P2 is “the big one”
• P2 extension to Mon Nov 10, upgrade weight to 15%
• P3 smaller, downgrade weight to 10%, due Fri Dec 5

Week 10, Mon 3 Nov 03 © Tamara Munzner 3

Demo
• sample program

– remember, download all 3 textures to run this!
– you should also use the checkerboard image

• questions?

Week 10, Mon 3 Nov 03 © Tamara Munzner 4

Readings
• Chapter 8.8: hidden surface removal

Week 10, Mon 3 Nov 03 © Tamara Munzner 5

News
• yet more extra office hours TBD

– check newsgroup

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 6

Visibility recap

22

Week 10, Mon 3 Nov 03 © Tamara Munzner 7

Invisible Primitives
• why might a polygon be invisible?

– polygon outside the field of view / frustum
• clipping

– polygon is backfacing
• backface culling

– polygon is occluded by object(s) nearer the viewpoint
• hidden surface removal

Week 10, Mon 3 Nov 03 © Tamara Munzner 8

Back-Face Culling
• on the surface of a closed manifold,

polygons whose normals point away from
the camera are always occluded:

note: backface culling
alone doesn’t solve the

hidden-surface problem!

Week 10, Mon 3 Nov 03 © Tamara Munzner 9

Back-face Culling: NDCS

yy

zz eyeeye

VCSVCS

NDCSNDCS

eyeeye works to cull ifworks to cull if 0>ZN
yy

zz

Week 10, Mon 3 Nov 03 © Tamara Munzner 10

Painter’s Algorithm
• draw objects from back to front
• problems: no valid visibility order for

– intersecting polygons
– cycles of non-intersecting polygons possible

Week 10, Mon 3 Nov 03 © Tamara Munzner 11

BSP Trees
• preprocess: create binary tree

– recursive spatial partition

Week 10, Mon 3 Nov 03 © Tamara Munzner 12

BSP Trees
• runtime: correctly traversing this tree

enumerates objects from back to front
– check which side of plane viewpoint is on
– draw far, draw object in question, draw near

33

Week 10, Mon 3 Nov 03 © Tamara Munzner 13

Summary: BSP Trees

• pros:
– simple, elegant scheme
– only writes to framebuffer (no reads to see if

current polygon is in front of previously
rendered polygon, i.e., painters algorithm)

• thus very popular for video games (but getting
less so)

• cons:
– computationally intense preprocess stage

restricts algorithm to static scenes
– slow time to construct tree: O(n log n) to

split, sort
Week 10, Mon 3 Nov 03 © Tamara Munzner 14

Warnock’s Algorithm
• recursive viewport

subdivision, stop if
– 0 polygons

• background color

– 1 polygon
• object color

– down to single pixel
• explicitly find depths

of all objects in
viewport

Week 10, Mon 3 Nov 03 © Tamara Munzner 15

Warnock’s Algorithm
• pros:

– very elegant scheme
– extends to any primitive type

• cons:
– hard to embed hierarchical schemes in hardware
– complex scenes usually have small polygons

and high depth complexity
• thus most screen regions come down to the

single-pixel case

Week 10, Mon 3 Nov 03 © Tamara Munzner 16

The Z-Buffer Algorithm
• both BSP trees and Warnock’s algorithm

were proposed when memory was expensive
– example: first 512x512 framebuffer > $50,000!

• Ed Catmull (mid-70s) proposed a radical new
approach called z-buffering.

• the big idea: resolve visibility independently
at each pixel

Week 10, Mon 3 Nov 03 © Tamara Munzner 17

The Z-Buffer Algorithm
• we know how to rasterize polygons into an

image discretized into pixels:

Week 10, Mon 3 Nov 03 © Tamara Munzner 18

The Z-Buffer Algorithm
• what happens if multiple primitives occupy

the same pixel on the screen? Which is
allowed to paint the pixel?

44

Week 10, Mon 3 Nov 03 © Tamara Munzner 19

The Z-Buffer Algorithm
• idea: retain depth (Z in eye coordinates)

through projection transform
– use canonical viewing volumes
– each vertex has z coordinate (relative to eye

point) intact

Week 10, Mon 3 Nov 03 © Tamara Munzner 20

The Z-Buffer Algorithm
• augment color framebuffer with Z-buffer or

depth buffer which stores Z value at each pixel
– at frame beginning, initialize all pixel depths to ∞
– when rasterizing, interpolate depth (Z) across

polygon and store in pixel of Z-buffer
– suppress writing to a pixel if its Z value is more

distant than the Z value already stored there

Week 10, Mon 3 Nov 03 © Tamara Munzner 21

Interpolating Z
• edge equations: Z just another planar

parameter:
• z = (-D - Ax – By) / C
• if walking across scanline by (Dx)

znew = zold – (A/C)(Dx)

– total cost:
• 1 more parameter to

increment in inner loop
• 3x3 matrix multiply for setup

• edge walking: just interpolate Z along
edges and across spans

Week 10, Mon 3 Nov 03 © Tamara Munzner 22

Z-buffer
•store (r,g,b,z) for each pixel
– typically 8+8+8+24 bits, can be more

for all i,j {for all i,j {
Depth[i,j] = MAX_DEPTHDepth[i,j] = MAX_DEPTH
Image[i,j] = BACKGROUND_COLOURImage[i,j] = BACKGROUND_COLOUR
} }
for all polygons P {for all polygons P {
for all pixels in P {for all pixels in P {

if (Z_pixel < Depth[i,j]) {if (Z_pixel < Depth[i,j]) {
Image[i,j] = C_pixelImage[i,j] = C_pixel
Depth[i,j] = Z_pixelDepth[i,j] = Z_pixel

} }
} }

} }

Week 10, Mon 3 Nov 03 © Tamara Munzner 23

Depth Test Precision
– reminder: projective transformation maps eye-

space z to generic z-range (NDC)
– simple example:

– thus:

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

�

−

=

�
�
�
�
�

�

	

�

�

�
�
�
�

�

�

�
�
�
�

�

�

10100
00

0010
0001

1
z

y

x

baz

y

x

T

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

�

−

=

�
�
�
�
�

�

	

�

�

�
�
�
�

�

�

�
�
�
�

�

�

10100
00

0010
0001

1
z

y

x

baz

y

x

T

eyeeye

eye
NDC z

b
a

z

bza
z +=

+⋅
=

eyeeye

eye
NDC z

b
a

z

bza
z +=

+⋅
=

Week 10, Mon 3 Nov 03 © Tamara Munzner 24

Depth Test Precision
– therefore, depth-buffer essentially stores 1/z,

rather than z!
– this yields precision problems with integer depth

buffers:

--zzeyeeye

zzNDCNDC

--nn --ff

55

Week 10, Mon 3 Nov 03 © Tamara Munzner 25

Depth Test Precision
– precision of depth buffer is bad for far objects
– depth fighting: two different depths in eye space

get mapped to same depth in framebuffer
• which object “wins” depends on drawing order and

scan-conversion

– gets worse for larger ratios f:n
• rule of thumb: f:n < 1000 for 24 bit depth buffer

Week 10, Mon 3 Nov 03 © Tamara Munzner 26

Z-buffer
– hardware support in graphics cards
– poor for high-depth-complexity scenes

• need to render all polygons, even if
most are invisible

– “jaggies”: pixel staircase along edges

eyeeye

Week 10, Mon 3 Nov 03 © Tamara Munzner 27

The A-Buffer
– antialiased, area-averaged accumulation buffer

• z-buffer: one visible surface per pixel
• A-buffer: linked list of surfaces

•• data for each surface includesdata for each surface includes
•• RGB, Z, areaRGB, Z, area--coverage percentage, ...coverage percentage, ...

Week 10, Mon 3 Nov 03 © Tamara Munzner 28

The Z-Buffer Algorithm
• how much memory does the Z-buffer use?
• does the image rendered depend on the

drawing order?
• does the time to render the image depend

on the drawing order?
• how does Z-buffer load scale with visible

polygons? with framebuffer resolution?

Week 10, Mon 3 Nov 03 © Tamara Munzner 29

Z-Buffer Pros
• simple!!!
• easy to implement in hardware
• polygons can be processed in arbitrary order
• easily handles polygon interpenetration
• enables deferred shading

– rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

Week 10, Mon 3 Nov 03 © Tamara Munzner 30

Z-Buffer Cons
• lots of memory (e.g. 1280x1024x32 bits)

– with 16 bits cannot discern millimeter differences in objects
at 1 km distance

• Read-Modify-Write in inner loop requires fast memory
• hard to do analytic antialiasing

– we don’t know which polygon to map pixel back to
• shared edges are handled inconsistently

– ordering dependent
• hard to simulate translucent polygons

– we throw away color of polygons behind closest one

66

Week 10, Mon 3 Nov 03 © Tamara Munzner 31

Visibility

– object space algorithms
• explicitly compute visible portions of polygons
• painter’s algorithm: depth-sorting, BSP trees

– image space algorithms
• operate on pixels or scan-lines
• visibility resolved to the precision of the display
• Z-buffer, Warnock’s

Week 10, Mon 3 Nov 03 © Tamara Munzner 32

Hidden Surface Removal
• 2 classes of methods
– image-space algorithms

• perform visibility test for every pixel independently
• limited to resolution of display
• performed late in rendering pipeline

– object-space algorithms
• determine visibility on a polygon level in camera

coordinates
• resolution independent
• early in rendering pipeline (after clipping)
• expensive

Week 10, Mon 3 Nov 03 © Tamara Munzner 33

Pick up Homework 1

