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The Rendering Pipeline

Texture Mapping
• Associate 2D information with 3D surface

– Point on surface corresponds to a point in the texture

• Introduced to increase realism
– Lighting/shading models not enough

• Hide geometric simplicity
– map a brick wall texture on a flat polygon
– create bumpy effect on surface
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Texture Mapping
• Texture Coordinates

– generation at vertices
• specified by programmer or artist

glTexCoord2f(s,t) 
glVertexf(x,y,z)

• generate as a function of vertex coords
glTexGeni(), glTexGenfv()

s = a*x + b*y + c*z + d*h

– interpolated across triangle (like R,G,B,Z)
• …well not quite!

Texture Mapping
• Texture Coordinate Interpolation

– perspective foreshortening problem
– also problematic for color interpolation, etc.

Attribute Interpolation

Bilinear Interpolation
Incorrect

Perspective correct
Correct

Texture Coordinate Interpolation
• Perspective Correct Interpolation

– α, β, γ :
• Barycentric coordinates of a point P in a triangle

– s0, s1, s2 :   texture coordinates
– w0, w1,w2 : homogeneous coordinates
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Texture Mapping
• Textures of other dimensions

– 3D: solid textures
• e.g.: wood grain, medical data, ...
• glTexCoord3f(s,t,r)

– 4D: 3D + time, projecting 
textures

• glTexCoord3f(s,t,r,q)

Texture Coordinate Transformation
• Motivation:

– Change scale, orientation of texture on an object

• Approach:
– texture matrix stack
– 4x4 matrix stack
– transforms specified (or generated) tex coords

glMatrixMode( GL_TEXTURE );
glLoadIdentity();

…



Texture Coordinate Transformation

• Example:

(0,0)(0,0) (1,0)(1,0)

(0,1)(0,1) (1,1)(1,1)

glScalef(4.0,4.0,?);glScalef(4.0,4.0,?);
(0,0)(0,0) (4,0)(4,0)

(0,4)(0,4) (4,4)(4,4)

Texture Lookup
• Issue:
– What happens to fragments with s or t outside the interval 

[0…1]?

Multiple choices:
– Take only fractional part of texture coordinates

• Cyclic repetition of texture to tile whole surface
glTexParameteri( …, GL_TEXTURE_WRAP_S,

GL_REPEAT )
– Clamp every component to range [0…1]

• Re-use color values from border of texture image
glTexParameteri( …, GL_TEXTURE_WRAP_S,

GL_CLAMP )

Texture Functions
• Once got value from the texture map, can:

– Directly use as surface color GL_REPLACE
– Modulate surface color GL_MODULATE
– Blend surface and texture colors GL_DECAL
– Blend surface color with another GL_BLEND

• Specific action depends on internal texture format
– Only existing channels used

• Specify with glTexEnvi(GL_TEXTURE_ENV, 
GL_TEXTURE_ENV_MODE, mode)

Reconstruction

– How to deal with:
• pixels that are much larger 

than texels ?
– apply filtering, “averaging”

• pixels that are much smaller 
than texels ?

– interpolate

Mip-mapping

Without MIPWithout MIP--mappingmapping

With MIPWith MIP--mappingmapping

Use an “image pyramid” to pre-compute averaged 
versions of the texture

Mip-mapping
Problem:
• A MIP-map level selects the same minification factor 

for both the s and the t direction (isotropic filtering)
• In reality, perspective foreshortening (amongst other 

reasons) can cause different scaling factors for the 
two directions



Mip-mapping

• Which resolution to choose:
– MIP-mapping: take resolution corresponding to the smaller 

of the sampling rates for s and t
• Avoids aliasing in one direction at cost of blurring in the other 

direction

– Better: anisotropic texture filtering
• Also uses MIP-map hierarchy
• Choose larger of sampling rates to select MIP-map level
• Then use more samples for that level to avoid aliasing
• Maximum anisotropy (ratio between s and t sampling rate) usually

limited (e.g. 4 or 8)

Texture Mapping Functions
Two Step Parameterization:
• Step 1: map 2D texture onto an intermediate 

simple surface
– Sphere
– Cube
– Cylinder

• Step 2: map from this surface to the object
– Surface normal

• Commonly used for environment mapping

Environment Mapping
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Spherical Maps – Blinn & Newell ‘76
• Transform reflection vector r into spherical coordinates 

(θ, Ф)
– θ varies from [0, π] (latitude)
– Ф varies from [0, 2π] (longitude)

r = (rx, ry, rz) = 2(n.v)n – v

Θ = arccos(- rz)
Ф = { arccos(- rx /sinΘ)  if ry ≥ 0

{ 2π - arccos(- rx /sinΘ) otherwise

Spherical Maps – Blinn & Newell ‘76

Slice through the photo

Each pixel corresponds to particular direction in the 
environment

• Singularity at the poles!
• OpenGL support GL_SPHERE_MAP

Cube Mapping – Greene ‘86
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Cube Mapping – Greene ‘86
• Direction of reflection vector r selects the face of 

the cube to be indexed
– Co-ordinate with largest magnitude

• e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face!

– Remaining two coordinates (normalized by the 3rd

coordinate) selects the pixel from the face.
• e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

• Difficulty in interpolating across faces!
• OpenGL support GL_CUBE_MAP


