
Texture Mapping

CPSC 414
10/24/03

Abhijeet Ghosh

The Rendering Pipeline

Texture Mapping
• Associate 2D information with 3D surface

– Point on surface corresponds to a point in the texture

• Introduced to increase realism
– Lighting/shading models not enough

• Hide geometric simplicity
– map a brick wall texture on a flat polygon
– create bumpy effect on surface

Texture Pipeline

Compute
object space

location

Use projector
function to find

(u, v)

Use corresponder
function to find

texels

Apply value
transform function
(e.g., scale, bias)

Modify
illumination

equation value

Texture Pipeline

v

u

eye
Texel color

(0.9,0.8,0.7)

(x, y, z)

Object position

(-2.3, 7.1, 17.7)

(u, v)

Parameter space

(0.32, 0.29)

Texture

Image space

(81, 74)

Texture Mapping

ss

tt

(s(s00,t,t00))
(s(s11,t,t11))

(s(s22,t,t22))

00 11
00

11

(s, t) parameterization in
OpenGL

Texture Mapping
• Texture Coordinates

– generation at vertices
• specified by programmer or artist

glTexCoord2f(s,t)
glVertexf(x,y,z)

• generate as a function of vertex coords
glTexGeni(), glTexGenfv()

s = a*x + b*y + c*z + d*h

– interpolated across triangle (like R,G,B,Z)
• …well not quite!

Texture Mapping
• Texture Coordinate Interpolation

– perspective foreshortening problem
– also problematic for color interpolation, etc.

Attribute Interpolation

Bilinear Interpolation
Incorrect

Perspective correct
Correct

Texture Coordinate Interpolation
• Perspective Correct Interpolation

– α, β, γ :
• Barycentric coordinates of a point P in a triangle

– s0, s1, s2 : texture coordinates
– w0, w1,w2 : homogeneous coordinates

210

221100

///
///

www
wswswss

γ+β+α
⋅γ+⋅β+⋅α

=
210

221100

///
///

www
wswswss

γ+β+α
⋅γ+⋅β+⋅α

=

Texture Mapping
• Textures of other dimensions

– 3D: solid textures
• e.g.: wood grain, medical data, ...
• glTexCoord3f(s,t,r)

– 4D: 3D + time, projecting
textures

• glTexCoord3f(s,t,r,q)

Texture Coordinate Transformation
• Motivation:

– Change scale, orientation of texture on an object

• Approach:
– texture matrix stack
– 4x4 matrix stack
– transforms specified (or generated) tex coords

glMatrixMode(GL_TEXTURE);
glLoadIdentity();

…

Texture Coordinate Transformation

• Example:

(0,0)(0,0) (1,0)(1,0)

(0,1)(0,1) (1,1)(1,1)

glScalef(4.0,4.0,?);glScalef(4.0,4.0,?);
(0,0)(0,0) (4,0)(4,0)

(0,4)(0,4) (4,4)(4,4)

Texture Lookup
• Issue:
– What happens to fragments with s or t outside the interval

[0…1]?

Multiple choices:
– Take only fractional part of texture coordinates

• Cyclic repetition of texture to tile whole surface
glTexParameteri(…, GL_TEXTURE_WRAP_S,

GL_REPEAT)
– Clamp every component to range [0…1]

• Re-use color values from border of texture image
glTexParameteri(…, GL_TEXTURE_WRAP_S,

GL_CLAMP)

Texture Functions
• Once got value from the texture map, can:

– Directly use as surface color GL_REPLACE
– Modulate surface color GL_MODULATE
– Blend surface and texture colors GL_DECAL
– Blend surface color with another GL_BLEND

• Specific action depends on internal texture format
– Only existing channels used

• Specify with glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, mode)

Reconstruction

– How to deal with:
• pixels that are much larger

than texels ?
– apply filtering, “averaging”

• pixels that are much smaller
than texels ?

– interpolate

Mip-mapping

Without MIPWithout MIP--mappingmapping

With MIPWith MIP--mappingmapping

Use an “image pyramid” to pre-compute averaged
versions of the texture

Mip-mapping
Problem:
• A MIP-map level selects the same minification factor

for both the s and the t direction (isotropic filtering)
• In reality, perspective foreshortening (amongst other

reasons) can cause different scaling factors for the
two directions

Mip-mapping

• Which resolution to choose:
– MIP-mapping: take resolution corresponding to the smaller

of the sampling rates for s and t
• Avoids aliasing in one direction at cost of blurring in the other

direction

– Better: anisotropic texture filtering
• Also uses MIP-map hierarchy
• Choose larger of sampling rates to select MIP-map level
• Then use more samples for that level to avoid aliasing
• Maximum anisotropy (ratio between s and t sampling rate) usually

limited (e.g. 4 or 8)

Texture Mapping Functions
Two Step Parameterization:
• Step 1: map 2D texture onto an intermediate

simple surface
– Sphere
– Cube
– Cylinder

• Step 2: map from this surface to the object
– Surface normal

• Commonly used for environment mapping

Environment Mapping

reflective surface

viewer

environment
texture image

v

n

r

projector function converts
reflection vector (x, y, z) to
texture image (u, v)

Spherical Maps – Blinn & Newell ‘76
• Transform reflection vector r into spherical coordinates

(θ, Ф)
– θ varies from [0, π] (latitude)
– Ф varies from [0, 2π] (longitude)

r = (rx, ry, rz) = 2(n.v)n – v

Θ = arccos(- rz)
Ф = { arccos(- rx /sinΘ) if ry ≥ 0

{ 2π - arccos(- rx /sinΘ) otherwise

Spherical Maps – Blinn & Newell ‘76

Slice through the photo

Each pixel corresponds to particular direction in the
environment

• Singularity at the poles!
• OpenGL support GL_SPHERE_MAP

Cube Mapping – Greene ‘86

A

B
C

E

F

D

Cube Mapping – Greene ‘86
• Direction of reflection vector r selects the face of

the cube to be indexed
– Co-ordinate with largest magnitude

• e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face!

– Remaining two coordinates (normalized by the 3rd

coordinate) selects the pixel from the face.
• e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

• Difficulty in interpolating across faces!
• OpenGL support GL_CUBE_MAP

